Low Light Image Enhancement Based on Two-Step Noise Suppression

Haoran Su and Cheolkon Jung
School of Electronic Engineering, Xidian University, China

Low Light Image Enhancement (LLIE)

- **Low light condition**: Low SNR, much noise, low contrast, weak color;
- **LLIE**: Over-enhancement, noise amplification in HVS after CE;
- **Our approach**:
 1. Two-step noise suppression;
 2. Adopt NLF and JND for perceptual CE;

Proposed Method

- **Noise Aware CE**
 - Noise aware histogram: Adjusting histogram by high contrast pixels from NLF (not corrupted by noise) [1][2];
 - Global CE by AGCW [3]
- **JND-Based Noise Reduction**
 1. Noise becomes obvious after CE due to the decrease of JND thresholds (luminance adaptation);
 2. Noise amplification is more severe in smooth regions than textural regions (contrast masking);
 - We perform noise reduction in detail layer using JND model (low contrast pixels) as follows [4]:
 \[
 d_{\text{out}}(x,y) = e^{-V(l_{s,\text{out}}(x,y)/V(l_{s,\text{in}}(x,y))}d(x,y)
 \]

Whole Framework

Visual Comparison

Objective Evaluation

<table>
<thead>
<tr>
<th>Method</th>
<th>Luminance</th>
<th>Contrast</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed</td>
<td>1.5873</td>
<td>1.4754</td>
<td>0.9833</td>
</tr>
<tr>
<td>ACEWC [5]</td>
<td>1.7088</td>
<td>1.2886</td>
<td>0.9164</td>
</tr>
<tr>
<td>CADIE [6]</td>
<td>1.3170</td>
<td>1.1679</td>
<td>0.9875</td>
</tr>
</tbody>
</table>

Conclusions

- **LLIE based on two-step noise suppression**;
- **Noise aware CE** for high contrast pixels based on noise aware histogram;
- **JND-based noise reduction** for low contrast pixels using JND model (JND from luminance adaptation; Detail layer)
- Experiment results demonstrate that the proposed method successfully enhances contrast in low light images while minimizing noise amplification.

References

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 61271298) and the International S&T Cooperation Program of China (No. 2014DFG12780).