Supervised group nonnegative matrix factorisation with similarity constraints and applications to speaker identification

Romain Serizel1, Victor Bisot2, Slim Essid2, Gaël Richard2

1LORIA, Université de Lorraine, Inria, CNRS (France)
2LTCI, Télécom ParisTech, Université Paris-Saclay (France)

Monday 6th, March 2017
1 Speaker identification: What? Why?

2 Task-driven group NMF

3 Conclusions
Speaker identification

Main goal
Identify a person from an audio recording
Speaker identification

Main goal
Identify a person from an audio recording
Session concept

Recording variability

Icons made by Freepik from www.flaticon.com
Session concept

Recording variability

- Aging,
Session concept

Recording variability

- Aging,
- Perturbations,
Session concept

Recording variability

- Aging,
- Perturbations,
- Microphones...
Session concept

Recording variability
- Aging,
- Perturbations,
- Microphones...
Applications

Audio indexing (broadcast show, conferences, . . .)
- Content retrieval
- Rich-text transcription

Robust speech transcription
- Speaker adaptive training
- Speaker related feature/model adaptation

Voice-based identification
- Soft biometrics
Standard classification chain (1)

- Train the dictionary

\[V \approx W \times H \]

\[\min_{W, H} D(V \mid WH) \]
Standard classification chain (2)

- Project data on the new space

\[
\min_{\mathbf{W}} D\left(\mathbf{V} \mid \mathbf{WH}\right)
\]
Standard classification chain (3)

- Train the classifier on projected data

\[
\begin{align*}
V & \approx W \times H \\
\min D(V \mid WH) & \min_{A} E_{y,H}[I_s(y, A, h)]
\end{align*}
\]
Standard classification chain (4)

- Use the dictionary and classifier

\[V \approx W \times h \]

\[\min_H D(V | WH) \]

Predicted class-probabilities

Problem

\[W \] and \[H \] are optimised according to a reconstruction criterion

Serizel et al.
Task-driven group NMF for speaker identification
3/6/2017
Standard classification chain (4)

- Use the dictionary and classifier

\[
\min_{H} D(V \mid WH)
\]

\[
V \approx W \times h
\]

Predicted class-probabilities

Problem

\(W \) and \(H \) are optimised according to a \textit{reconstruction} criterion
Task-driven NMF (1)

General idea
Learn the dictionaries together with classifier parameters:
- Nested optimisation problem

Dictionary divergence
- Euclidean norm: **closed form solution** for dictionaries
 - Task driven dictionary learning (Mairal et al., 2012)
 - Application to audio scene analysis (Bisot et al., 2016)
- General β-divergence:
 - Application to source separation (Sprechmann et al., 2014)
 - Application to event detection (Bisot et al., 2017)
Task-driven NMF : General idea

\[V \approx \min \limits_{W, A} E_{y, v} [l_s (y, A, \hat{h}(v, W))] \]
Task-driven NMF : General idea

\[
\min_{W, A} E_{y, v}[l_s(y, A, \hat{h}(v, W))] + \frac{\nu}{2} \| A \|^2
\]
Task-driven NMF: algorithm (1)

- For each new sample (v)

\[
\min_h \frac{1}{2} \| v - Wh \|_2^2 + \lambda_1 \| h \|_1 + \frac{\lambda_2}{2} \| h \|_2^2
\]
Task-driven NMF: algorithm (2)

- For each new sample (v)

Update the classifier parameters A

$$
\min_{A, v} E_{y, v}[l_s(y, A, \hat{h}(v, W))] + \frac{\nu}{2} \| A \|_2^2
$$
Task-driven NMF: algorithm (3)

- For each new sample \(\mathbf{v} \)

Update the dictionary \(\mathbf{W} \)

\[
\frac{\min_{\mathbf{w}}}{E_{y,v}} \left[l_s(y, A, \hat{h}(v, W)) \right] + \frac{\nu}{2} \| A \|_2^2
\]
Task-driven NMF in practice

Implementation details

- Can be applied to sample or mini-batch
- Supports nonnegativity constraints for W and H
- Dictionary (W) initialisation:
 - Random
 - NMF
 - Concatenated group NMF dictionaries (Serizel et al., 2016)
Task-driven group NMF (1)

Include group NMF in a task-driven framework (Serizel et al., 2016)

- Subdictionaries (related to a single speaker/session)
Task-driven group NMF (1)

Include group NMF in a task-driven framework (Serizel et al., 2016)

- Subdictionnaires (related to a single speaker/session)
- Impose speaker/session similarity constraints
Task-driven group NMF (1)

Include group NMF in a task-driven framework (Serizel et al., 2016)

- Subdictionaries (related to a single speaker/session)
- Impose speaker/session similarity constraints
Task-driven group NMF: algorithm (1)

- For each new sample (v)

Source code is available at https://github.com/rserizel/TGNMF
Task-driven group NMF: algorithm (2)

- For each new sample (v)

Update the classifier parameters A

Source code is available at https://github.com/rserizel/TGNMF
Task-driven group NMF: algorithm (3)

- For each new sample (v)

Update the corresponding dictionary $W^{(cs)}$

$$
\min_{W^{(cs)}} E_{y,v} \left[l_s (y,A,\hat{h}(v,W)) \right] + \frac{\nu}{2} \| A \|_2^2
$$

Source code is available at https://github.com/rserizel/TGNMF
Task-driven group NMF: algorithm (3)

- **Speaker** similarity constraint

Source code is available at https://github.com/rserizel/TGNMF
Task-driven group NMF: algorithm (3)

- **Session** similarity constraint

Update the corresponding dictionary $W^{(cs)}$

$$
\min_{W^{(cs)}} E_{y,v} \left[l_s(y, A, \hat{h}(v, W)) \right] + \frac{\nu}{2} || A ||^2 + \mu_1 J_{SPK} + \mu_2 J_{SES}
$$

Source code is available at https://github.com/rserizel/TGNMF
Experiments

Experiment setup

- Subset of the ESTER corpus (≈ 6 hours training data)
- 132 constant-Q transform coefficients
- Initial dictionary obtained with (group-)NMF : 100 iterations
- Projection on \(h \) with SPAMS toolbox\(^a\)
- Classifier : multinomial logistic regression
- After 5 epochs : fix \(W \), train \(A \) alone for 50 epochs

\(^a\) http://spams-devel.gforge.inria.fr/
Results (1)

Weighted F1-scores

<table>
<thead>
<tr>
<th>Initialisations</th>
<th>I-vector</th>
<th>NMF</th>
<th>GNMF_0</th>
<th>GNMF_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised</td>
<td>76.1%</td>
<td>75.6%</td>
<td>80.7%</td>
<td>81.7%</td>
</tr>
<tr>
<td>TNMF Tuning</td>
<td>–</td>
<td>79.9%</td>
<td>81.1%</td>
<td>81.9%</td>
</tr>
</tbody>
</table>

- GNMF_0 : group NMF **without** similarity constraints
- GNMF_c : group NMF **with** similarity constraints (speaker and session)
Results (2)

Weighted F1-scores

<table>
<thead>
<tr>
<th>Initialisations</th>
<th>GNMFO</th>
<th>GNMFc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised</td>
<td>80.7%</td>
<td>81.7%</td>
</tr>
<tr>
<td>Tuning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNMF</td>
<td>81.1%</td>
<td>81.9%</td>
</tr>
<tr>
<td>TGNMFO</td>
<td>81.7%</td>
<td>82.1%</td>
</tr>
<tr>
<td>TGNMFc</td>
<td>82.0%</td>
<td>82.2%</td>
</tr>
</tbody>
</table>

- **(T)GNMFO**: (task-driven) group NMF *without* similarity constraints
- **(T)GNMFc**: (task-driven) group NMF *with* similarity constraints (speaker and session)
Conclusions and future work

NMF for speaker identification
- Can be competitive with I-vectors

Task-driven NMF
- Large improvements for small dictionaries
- TGNMF\(_c\) best performance to date on the corpus

Future work
- Experiment with \(\beta\)-divergence
- Extend the framework to deep learning...
Further readings

V. Bisot, R. Serizel, S. Essid, and G. Richard. Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification. HAL-archives ouvertes : working paper or preprint (hal-01362864), September 2016. URL https://hal.archives-ouvertes.fr/hal-01362864.

