AN EFFICIENT TARGET LOCALIZATION ESTIMATOR FROM BISTATIC RANGE AND TDOA MEASUREMENTS IN MULTISTATIC RADAR

ICASSP 2018

Zhaotao Qin, Jun Wang and Yuxi Zhang
School of Electronics and Information Engineering, Beihang University, Beijing, China

Abstract

Problem Description
- Target localization problem in multistatic passive radar

Method
- Algebraic closed-form method
- Based on two-stage WLS estimator
- Using the hybrid BR and TDOA measurements

Advantage
- Provide a better target localization accuracy than using BR alone
- Be able to reach CRLB accuracy

Data Model
- 3D space
- M transmitters, \(t_i = [x_i, y_i, z_i]^T \)
- N receivers, \(s_j = [x_j, y_j, z_j]^T \)
- A single target, \(u = [x, y, z]^T \)

Method Derivation

First Stage
- BR positioning equation
 \[2r_j^2 \Delta u_j = u_j^2 + r_j^2 + d_j^2 + d_j^2 \]
- TDOA positioning equation
 \[2r_j^2 \Delta \tau_j = r_j^2 + s_j^2 + s_j^2 - 2(s_j - s_j)u + 2\tau_j^2 \]
- Matrix form equation
 \[B_j \Delta \varphi = h_j - G \varphi \]
- WLS solution
 \[\varphi = (G_j^T \Omega_j^{-1} G_j)^{-1} G_j^T \Omega_j^{-1} \]

Second Stage
- First stage solution
 \[\varphi = \hat{\varphi} + \Delta \varphi \]
- Dependency relationship
 \[\Delta \varphi = \hat{\varphi} + \Delta \varphi \]
- Matrix form equation
 \[B_j \Delta \varphi = h_j - G \Delta \varphi \]
- WLS solution
 \[\Delta \hat{\varphi} = (G_j^T \Omega_j^{-1} G_j)^{-1} G_j^T \Omega_j^{-1} \]

TDOA Measurement
- TDOA: time difference of arrival
 \[\Delta TDOA_j = r_j - r_j + \Delta \tau_j \]

Simulation Results

Simulation 1
- Be illustrated in Fig.3 and Table.1
- Performance of proposed method is best, due to introduction of TDOA
- Accuracy improvement is affected by the number of transmitters

Simulation 2
- Be reported in Fig.4
- The hybrid method outperforms the BR-based method, even though TDOA-based method fails to work

Simulations
- 5 transmitters, 5 receivers, 1 target
- \(Q_0 = \delta_j I_N, Q_m = \delta_j I_{N-1} \), \(Q_m = \text{diag}(Q, Q_0) \)
- 5000 ensemble runs

CRLB for BR + TDOA: \(\delta_j = 4 \)

Table.1. Average accuracy improvement, \(N = 5 \)

<table>
<thead>
<tr>
<th>Improvement</th>
<th>M=2</th>
<th>M=3</th>
<th>M=4</th>
<th>M=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE (dB)</td>
<td>3.80</td>
<td>1.37</td>
<td>0.96</td>
<td>0.56</td>
</tr>
<tr>
<td>CRLB (dB)</td>
<td>1.41</td>
<td>0.87</td>
<td>0.81</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Conclusion

- (1) This paper proposed a target localization algorithm using hybrid BR and TDOA measurements
- (2) It can provide a better location accuracy than BR-based method
- (3) It's able to attain CRLB bound, under small Gaussian measurement noise.