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Single-channel speech separation

e Deep learning systems have significantly advanced
the state of the problem [1, 2, 3, 4].

e Time-frequency mask estimation, which relies on
Short-time Fourier transform (STFT), remains the
mainstream method.

e Most of the systems are noncausal that cannot be
implemented in applications or devices that require
real-time processing.

Drawbacks of STFT

e |t is unclear if spectrogram is the optimal feature
for separation.

e Phase information is often lost, theoretical
performance upper-bound exists.

e Trade-off between latency and frequency resolution
needs to be considered.

e STFT and its inverse lead to higher system latency.

Time-domain modeling for separation

Targets:
e Replace STFT, learn a better front-end specialized
for separation.
e Enables real-time, low-latency processing.

ldeas:
e 1-D convolution and deconvolution autoencoder
as an adaptive front-end.
e Nonnegativity constraint on encoder output.
e Separation as mask estimation on the learnt
front-end.
e Learnable, frequency selective filters as decoder.

Problem description

Mixture waveform as the summation of sources:
@
x(t) = Z si(t)
=1

Split signals into segments:
X = CC(t)
Si.k = Si(t)

Represent signals by nonnegative weighted sum
of a set of basis signals (a nonnegative autoencoder):

telkL,(k+1L), k=1,2,...,K
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Source weight matrices can be treated as masks
applied on the mixture weight matrix
(separation module):
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Relation with traditional methods

e The autoencoder is similar to independent component
analysis (ICA) [5] with nonnegative mixing matrix and
semi-nonnegative matrix factorization (semi-NMF) [6].

e Unlike those methods, the weights and basis signals
are fitted in a nonnegative convolutional autoencoder
framework, which is jointly trained with the separation
module.

Model design

Encoder: Gated 1-D convolution

wip =RelU(xx, ®U)Oo(xx®V), k=12,...,K

Separator: Deep LSTM + dense layer with Softmax
activation for mask estimation

Decoder: Linear 1-D deconvolutional layer

Objective function: Scale-invariant SNR (SI-SNR)
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Experiment results

Data: ¢ WSJO-2mix dataset, 30 hours of training
data/10 hours of validation data/5 hours
of test data

e Downsample to 8k Hz sample rate

Network: ® 5 ms long (40 samples) 1-D filters in
encoder and decoder
e 500 filters (channels)
e 500/1000 hidden units in LSTM layers
with noncausal/causal settings
e 1000 hidden units in dense layer

Training: e Batch size: 128

e Learning rate: 1le-3, halve after no new
best model in validation set is found in
3 consecutive epochs

e Curriculum training: First train on 0.5s
long segments, then continue training
on 4s long segments

e Optimizer: Adam
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Fig. 2. Frequency response of basis signals in (a) causal and (b)
noncausal networks.

Table 1. SI-SNR (dB) and SDR (dB) for different methods on
WSJ0-2mix dataset.

Method Causal | SI-SNRi | SDRi
uPIT-LSTM [4] v — 7.0
TasNet-LSTM v 7.7 3.0
DPCL++ [3] X 10.8 —
DANet [5] X 10.5 -
uPIT-BLSTM-ST [4] X — 10.0
TasNet-BLSTM X 10.8 11.1

Table 2. Minimum latency (ms) of causal methods.

Method 1i | 15
uPIT-LSTM [4] | 32
TasNet-LSTM 5

Ttot
>32
5.23

0.23

Conclusion

e Experiments show that TasNet has advantage on both separation
performance and system latency.

e The 1-D convolutional autoencoder can be an adaptive frontend
specified for the task.

e The same procedure can be applied to various of other tasks in
audio processing.

Future works

e Further improve the performance of TasNet.

e Investigate the choice of number/length/overlap in the
convolutional autoencoder.

e Look into the learnt representation and compare it with STFT.

e Test this system in other audio processing tasks.
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