MIMO Radar Target Detection Using Low-Complexity Receiver

Yang Li\(^1\), Qian He\(^1\) and Rick S. Blum\(^1\)

\(^1\)University of Electronic Science and Technology of China, China

\(^2\)Lehigh University, USA

Background

- A large number of transmitters are often available.
- Processing additional transmitters requires additional hardware or software complexity at the receivers.
- It is necessary to design the receivers wisely to control the complexity cost.

Received Signal Model

- The received target-present signal at the \(n\)-th receiver:
 \[r_n(t) = \sum_{m=1}^{M} \gamma_{mn} s_m(t) + w(t), \]
- \(\gamma_{mn}\) is a complex white Gaussian variable.
- \(s_m(t)\) is the output of the \(m\)-th transmitter.
- \(w(t)\) is the zero-mean Gaussian temporally white clutter-plus-noise such that \(E\{w(t)w^*(t)\} = N_0\delta(t - \tau)\).

Detection Problem

- Hypothesis Testing Problem
 \[H_0: r_n(t) = w(t) \]
 \[H_1: r_n(t) = \sum_{m=1}^{M} \gamma_{mn} s_m(t) + w(t), \]
- Optimal Test Statistic (TS)
 \[T = r_n(t)^* (\Sigma^{-1}_n - \Sigma^{-1}) r_n(t) \]
 where
 \[\Sigma_n = N_0 I + \mathbb{E}\{\Psi^* \Psi\} \]

Transmitter selection

- Special Case
 - Spatial white reflection coefficients and clutter-plus-noise
 \[\Lambda = \mathbb{E}\{\xi(\xi^*)\} = \mathbb{E}\{\xi(\xi^*)\} = \mathbb{E}\{\xi(\xi^*)\} = \mathbb{E}\{\xi(\xi^*)\} \]
 - Orthogonal waveforms
 \[\int_{-T/2}^{T/2} s_m(t) s_n(t) dt = 0 \quad \text{for} \ m \neq n. \]

MSCNR-based Selection

- Define the SCNR of the \((m,n)\)-th path as
 \[\psi_{mn} = \frac{E\{s_m(t)\}^2}{N_0 R_{mn} R_{nn}} \]
 The TS can be rewritten as
 \[T_n = \sum_{m=1}^{M} \psi_{mn} J_m(t) \]
 where \(\psi_{mn} = \frac{E\{s_m(t)\}^2}{N_0 R_{mn} R_{nn}}, \quad J_m(t) = \sum_{n=1}^{N} \gamma_{mn} s_n(t) + w(t). \]
- Lemma: Denote by \(p_{mn}^{(1)}, p_{mn}^{(2)}\) the decreasing sequence of nonnegative \(p_{mn}^{(1)} \rightarrow p_{mn}^{(2)} \rightarrow \cdots \rightarrow p_{mn}^{(M)}\), where \(R_{mn} = N_0 \Delta f \equiv \rho_0 + \rho_1 \beta \) for \(\rho_0, \rho_1 \in \mathbb{R}^{+}\) if \(\rho_{mn}^{(1)} \geq \rho_{mn}^{(2)} \) then
 \[P_{mn}(\rho_{mn}^{(i)}) \geq 2 P_{mn}(\rho_{mn}^{(i+1)}). \]

Numerical Examples

- Example 1: Special case
 - Transmitters: \((x_3, y_3) = ((-1, 0) \text{ km}, (0, 2) \text{ km}), \text{ and } (x_2, y_2) = (0, 2) \text{ km}.\)
 - Receivers: \((x_1, y_1) = ((1, 0) \text{ km})\text{ and } (x_2, y_2) = ((0, 1) \text{ km}).\)
 - Frequency vector \(f = [1, 1, 2, 1] \text{ and } F_y = 10^{-2}. \)

<table>
<thead>
<tr>
<th>(\Delta f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.975</td>
<td>2.025</td>
<td>2.075</td>
<td>2.125</td>
<td>2.175</td>
<td>2.225</td>
<td>2.275</td>
<td>2.325</td>
</tr>
</tbody>
</table>

Conclusion

Acknowledgements

The work of Y. Li and Q. He was supported by the National Natural Science Foundation of China under Grants No. 61371374 and 61371374, and Hunan Yingling Education Foundation under Grant No. 161089. The work of R. S. Blum was supported by the National Science Foundation under Grant No. ECS-1409578.