

BLIND IMAGE DEBLURRING VIA REWEIGHTED GRAPH TOTAL VARIATION

BACKGROUND

- \square Image blur model: $\mathbf{b} = \mathbf{k} \otimes \mathbf{x} + \mathbf{n}$, where \otimes is a convolution process. □ Blind image deblurring (BID) is to recover both the latent sharp image **x** and blur kernel **k**, from only blurry observation **b** with noise **n**.
 - > highly ill-posed problem because the feasible solution is not only **unstable to** noise but also non-unique.
 - > Previous image priors either can't solve BID [1] or suffer from high complexity. [2]
- □ Previous graph Laplacian regularizer [3] in GSP has shown to promote piecewise-smooth (PWS) recovered signal behavior.
 - > We explore the relationship between graph and image blur, and propose a graph-based prior for blind image deblurring.

OBSERVATION AND MOTIVATION

Graph weight is defined using Gaussian kernel:

$$[\mathbf{W}]_{i,j} = w_{i,j} = \exp(-\frac{\|x_i - x_j\|^2}{\sigma^2})$$

A skeleton image is proposed as a proxy, which is a PWS version of the original image that preserves strong edges while removes textural details.

□ The graph weight distribution:

Observation:

 \geq Sharp patch and its skeleton version have bi-modal distribution.

 \geq Bi-modal distribution of skeleton image is more desirable.

Yuanchao Bai*, Gene CHEUNG⁺, Xianming Liu[^], Wen Gao^{*} * Peking University, + National Institute of informatics, ^Harbin Institute of Technology

REWEIGHTED GRAPH TOTAL VARIATION PRIOR

 $\|\mathbf{x}\|_{RGTV} = \sum_{i=1}^{N} \|\mathbf{x}_{i}\|_{i=1}^{N}$

□ We propose a novel reweighted graph total variation (RGTV) prior that can promote bi-modal distribution

=i=1Different from conventional graph total variation (GTV) [4] with fixed weights, the weights of RGTV are also functions of x, which promotes bi-modal weight distribution.

BLIND IMAGE DEBLURRING ALGORITHM

- □ The objective function for blind image deblurring: $\hat{\mathbf{x}}, \hat{\mathbf{k}} = \arg\min_{\mathbf{x},\mathbf{k}} \frac{1}{2} \|\mathbf{k} \otimes \mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_{RGTV} + \mu \|\mathbf{k}\|_2^2$ • We alternatingly solve the sub-problem: $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{k} \otimes \mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{RGTV}$ with a prime-dual algorithm [5] and the sub-problem $\hat{\mathbf{k}} = \arg\min_{\mathbf{k}} \frac{1}{2} \|\mathbf{k} \otimes \mathbf{x} - \mathbf{b}\|_{2}^{2} + \mu \|\mathbf{k}\|_{2}^{2}$ which has closed-form solution.

diag
$$\left(\mathbf{W}_{i,\cdot}(\mathbf{x})\right)\nabla_{i}\mathbf{x}\right\|_{1}$$

$$\sum_{j=1}^{N} w_{i,j}(x_i, x_j) |x_j - x_i|$$

Contact: Yuanchao Bai, PKU, Email: yuanchao.bai@pku.edu.cn

EXPERIMENTAL RESULTS

□ Artificial Cases. Each sharp image convolves with a 7×7 blur kernel

> Quantitative Comparisons (PSNR:dB):

Methods

Krishnan et Levin et al. Michaeli & I Pan et al. Ours

Real Blurred Images.

(d) Michaeli & Irani

REFERENCES

] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman., "Understanding blind deconvolution algorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 3, no. 12, pp. 2354–2367, Dec 2011.

[2] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang, "Blind image deblurring using dark channel prior," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2016. [3] J. Pang and G. Cheung, "Graph Laplacian regularization for inverse imaging: Analysis in the continuous domain," in IEEE Transactions on Image Processing, April 2017, vol. 26, no.4, pp. 1770–1785.

[4] P. Berger, G. Hannak, and G. Matz, "Graph signal recovery via primal-dual algorithms for total variation minimization," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 842–855, Sept 2017.

5] Antonin Chambolle and Thomas Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging," J. Math. Imaging Vis., vol. 40, no. 1, pp. 120–145,

	Butterfly	Lena	Parrot
al.	29.4	28.9	29.3
	29.9	29.4	29.2
rani	30.6	30.3	31.9
	30.4	30.8	32.0
	30.8	31.0	32.7

(a) Blurry Input.

(b) Kirshnan et al.

(f) RGTV.