
ROBUST RECOGNITION OF SPEECH WITH BACKGROUND MUSIC 
IN ACOUSTICALLY UNDER-RESOURCED SCENARIOS

Introduction
 Task: Robust automatic speech recognition of speech with background music

 Applications like online 24/7 monitoring of broadcast media
 Two scenarios, where we aim to achieve robust recognition:

1) Acoustically under-resourced: Small amount of labeled training utterances 

(only 1 hour) + additional amount of non-labeled training utterances (20 hours)

2) Standard: Large amount of labeled training utterances (132 hours)
 Three investigated techniques to achieve the goal: 

1) Multi-condition training of acoustic models

2) Denoising autoencoders for feature enhancement

3) Joint training of both above mentioned techniques
 For both scenarios all three techniques achieve improved performance compared to 

baseline acoustic models trained on clean speech.
 Improvements in under-resourced scenario:

 Using non-labeled data; autoencoder is trained to provide robust feature enhancement
 Using the small amount of available labeled data; the autoencoder is fine-tuned along 
with acoustic model to provide robust recognition.
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Training datasets
 Training datasets: 

1) Large - 132 hours of labeled czech speech

2) Small – 1 hour of labeled, subset of Large, under-resourced scenario 
● Additional 20 hours of non-labeled data, easier to obtain than labeled

 All distorted training sets created by augmentation:
 Partitioning of available speech dataset into four parts
 First part left undistorted
 Other parts: summation of speech and music; SNR 0,5 and 10 dB

 Music dataset: 667 minutes of Electronic music
 Resembles background music in TV shows

Investigated techniques
 Multi-condition training

 Acoustic models have HMM-DNN architecture

1) FAM - Fully-connected deep neural network Acoustic Model

2) CAM - Convolutional deep neural network Acoustic Model

 Autoencoder for removal of music from features

1) FAE - Fully connected autoencoder

2) CAE - Convolutional autoencoder
●  Followed by FAM training on the processed data

 Joint training of cascade CAE + FAM
● Multi-condition training using noisy data

 Baseline acoustic model 
 Single-style training (SCT) using undistorted speech data

General acoustic model architecture
 HMM-DNN architecture

 Underlying GMM context dependent, speaker independent
 Small dataset – 619 states, Large – 2219 states

 Features
 39 filter bank coefficients, 25 ms frames, 10 ms shift
 Input vector: 11 consecutives frames, 5 preceding, 5 following current
 Normalization: Mean subtraction; floating window of 1 s.

Multi-condition training
 FAM – Fully-connected deep neural network Acousitc Models

 5 feedforward fully-connected hidden layers; 768 units.

 CAM – Convolutional deep neural network Acousitc Models
● 2 convolutional, 3 fully-connected layers (768 units)
● Input: 11 feature maps, 39 x 1 in size, i.e. 11 consecutive feature vectors
 First conv. layer: 105 maps 39 x 1, second conv. Layer: 157 maps 13 x 1

 Target: Senones (619 small dataset model, 2219 large dataset model)

 Training criterion: negative log-likelihood criterion

Fully-connected denoising autoencoder (FAE)
 Input: 11 distorted feature frames

 Architecture: Feedforward, four hidden layers, 768 units each

 Target: True undistorted speech feature frame

 Training criterion: Mean square error
 Sensitive to scaling, feature normalization to zero mean and unit variance

Convolutional denoising autoencoder (CAE)
 Input: 11 feature maps 39 x 1, i.e., 11 consecutive feature vectors

 Architecture: Two conv. layers (105 maps 39x1 and 157 maps 13x1 )
 3 fully-connected layers (768 units)

 Convolutional kernel: 5 x 1

 Target: True undistorted speech feature frame

 Training criterion: Mean square error

Joint training of CAE and FAM (JCMT)
1) CAE is trained as described above, but:

● Target: 11 consecutive frames of true clean speech
● Architecture change: Single fully connected layer only

2) FAM is trained using data processed by CAE.
● Architecture change: Two fully connected layers only

3) Concatenation of CAE and FAM into single network

4) Fine-tunning of joined network using negative log-likelihood criterion; target: senones

JCMT acoustic model is of the same size and topology as CAM.

Test datasets
 Generated dataset:13622 words, dictated in silence on colose-talk mic

 Augmentation using electronic music with SNR levels 10, 5, 0, -5 dB 
 In total five instances for different SNR levels 

 Real-world dataset: 2222 words from local radio news
 Electronic music with approximate SNR 10 dB on the background

Recognition engine
 One-pass speech decoder with time-synchronous Viterbi search
 We do not investigate the under-resourced scenario from linguistic point of view
 Linguistic part: Lexicon: 550k entries (words and collocations)

 Newspaper language model: For simulated datasets
● Broadcast language model: For real-world datasets
● Bigram language model structure

Experiments: Models trained on small dataset
Results stated as absolute improvements of accuracy
 Undistorted dataset: SCT baseline: 76.8% accuracy

 MCT and JMCT achive comparable performance to SCT
 Distorted generated datasets: Performance of SCT baseline deteriorates to 20.5% at 0 dB

 Most of the robust techniques achieve considerably higher accuracy
 FAE: Not beneficial when applied to the small dataset
 CAE: Significantly better results than FAE, improves over SCT by 5-14%
 MCT: Significantly improves over SCT by 14-23%, CAM/FAM comparable
 JMCT: Comparable in topology to CAM, better results, especially for low SNR
 Additional non-labeled data (20 hours): Improves performance of all aplicable 
techniques, e.g., 1-4% for JCMT.

 Real-world dataset: Comparable to 10dB  generated case, SCT performance deteriorates 
less significantly, otherwise consistent with results above

Experiments: Models trained on large dataset
 Undistorted dataset: SCT baseline: 84.9% accuracy

 All compared techniques achieve comparable performance
 Distorted generated datasets: Performance of SCT baseline deteriorates to 38.7% at 0 

dB
 All of the robust techniques achieve considerably higher accuracy
 FAE: The least beneficial technique, improves over SCT by 3-28%
 CAE: Better results than FAE, improves over SCT by 4-31%
 MCT: Significantly improves over SCT by 5-37%, CAM/FAM comparable on high SNR
 JMCT: Comparable in topology to CAM, improves over CAM by about 1%

 Real-world set: Comparable to 10dB generated scenario, consistent with results above

Conclusions
Both training dataset sizes: All techniques improve accuracy compared to SCT

 Autoencoders: CAE is more beneficial than FAE
 Multi-condition training: CAM achieves higher accuracy compred to FAM
 Joint training: Topology comparable to CAM, better results (especially for small dataset)

Small dataset: Smaller accuracy compared to large training dataset
 Additional non-labeled data: improve significantly autoencoder and JMCT performance
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(Number in parentheses: amount of non-labeled data for autoencoders)
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