

CONTENT-BASED REPRESENTATIONS OF AUDIO USING SIAMESE NEURAL NETWORKS

Pranay Manocha*, Rohan Badlani, Anurag Kumar, Ankit Shah, Benjamin Elizalde, Bhiksha Raj

Motivation

- Need effective ways to browse by content through audio databases of growing sizes
- Relate two audio based on their semantic content

Videos are

Problem

- -To create a Query by example retrieval system
- So how do we encode semantic content of audio?

Our Approach

Train a Siamese Neural Network which encode the audio-class specific information in a vector representation.

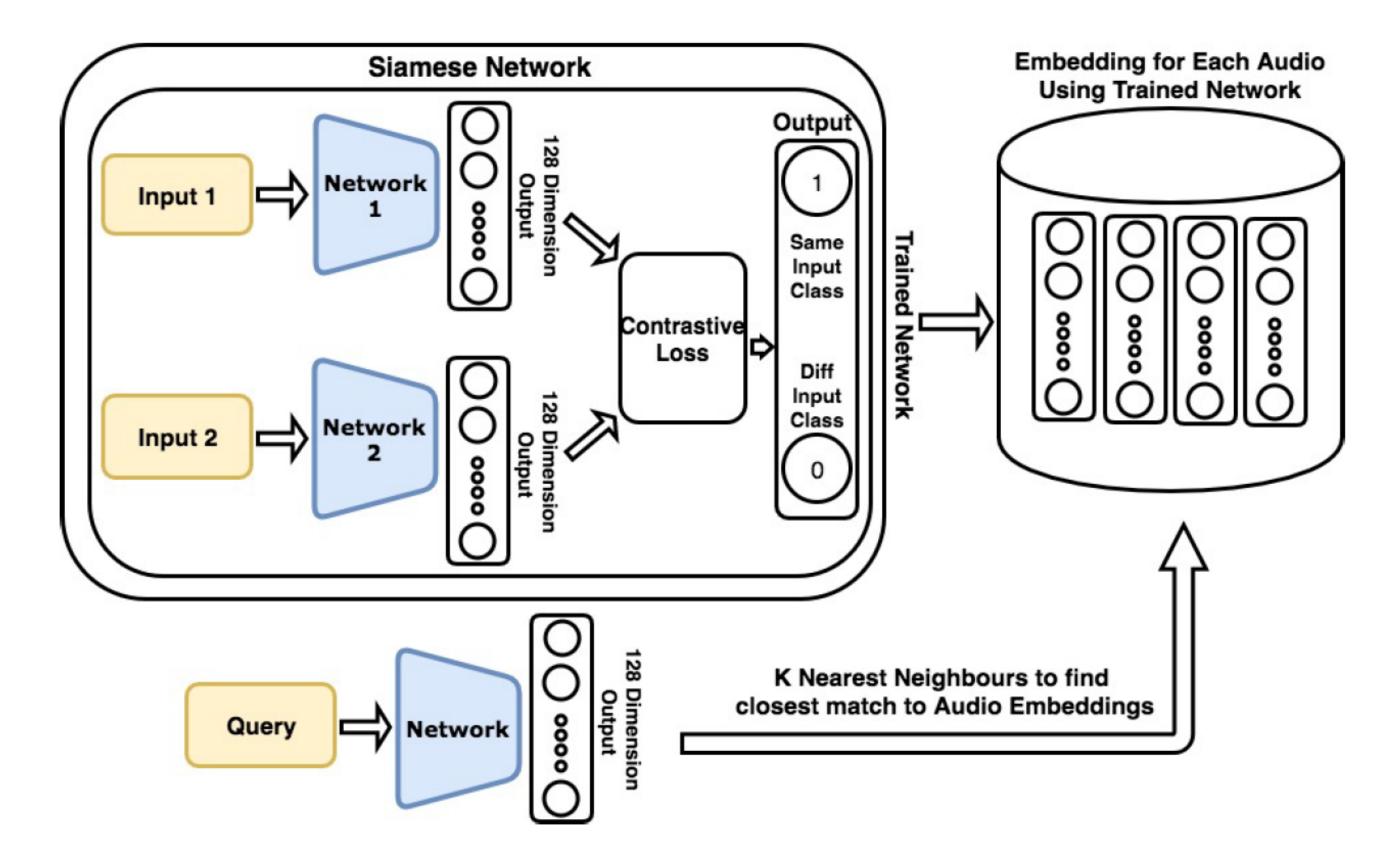
Challenges

- -Searching audio events is hard because the video metadata focus mainly on images.
- -The metadata does not guarantee the presence of an audio event.
- -The audio of user-generated videos, even within the same class, is unstructured and highly variable

Fingerprinting and Similarity Matching

- -Fingerprinting is useful in finding the exact match i.e. for finding multiple videos of the same event.
- -Our aim is similarity matching -> to retrieve all semantically similar files together

Approach and Model



Loss Function

$$L(W,Y,X1,X2) = \frac{(Y)(D_w^2)}{2} + \frac{(1-Y)max\{0,(m-D_w)\}^2}{2}$$

Custom Dataset Information

- -We consider list of sound events from 3 databases- ESC-50, US8K and TUT 2016. Overall, we consider 76 sound classes
- -We work on audio recordings from YouTube. For each of 76 classes, obtain 100 recordings from YouTube.

Similarity Measures

- Cosine Similarity
- Euclidean Distance

Training

- Balanced (NB)
- Unbalanced Train Sets (Nu)

Metrics

- Mean Average Precision across all queries (MAP)
- Precision at 1 (MP1)
- Precision of Top K Retrieval (MPK)

Results

We obtain the best results with unbalanced training and Euclidean distance as the distance measure.

	Euclidian Distance		Cosine Similarity	
Measures	NB	Nu	NB	Nu
MAP	0.0241	0.0342	0.0186	0.0133
MP1	0.314	0.436	0.132	0.333
MP25	0.099	0.177	0.105	0.133

Conclusions

- Euclidian Distance performs better than Cosine Distance
- Took K=25 as we found the highest value of MPk at K=25.
- Nu performs better than NB as it is able to learn the discriminative features better.
- MP1 values are fairly high, meaning that the first positive class hit is obtained at Rank 3 (for 0.436).

Audio Class	MP25
Wind Blowing	0.784
Sheep	0.753
Pig	0.724
Water Drop	0.711
Clock Tick	0.708
Brushing Teeth	0.699

- Multiplying MPk by K would give us the average number of correct class matches in top K retrievals. This value is nearly 20 for class 'wind blowing', meaning that 20 out of the 25 retrieved samples were of the correct class.

*Contact Author- pranaymnch@gmail.com