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Abstract

This paper applies deep neural network (DNN) to source

localization in a shallow water environment because of its

powerful modeling capability and the little dependence on the

prior knowledge of environmental parameters. The classical

two-stage scheme is adopted, in which feature extraction and

DNN analysis are independent steps. It firstly extracts the

input feature from the observed signal received by

underwater hydrophones. The eigenvectors associated with

the modal signal space are decomposed from the covariance

matrices of the data field at different frequencies, which are

used as the input feature of DNN. The time delay neural

network (TDNN) is exploited to model the long term feature

representation and construct the regression model. The

output is the source range-depth estimate. Several

experiments using simulation and experimental data are

conducted to evaluate the performance of the proposed

method. The results demonstrate the effectiveness and

potential of DNN for source localization. Particularly,

experiments show that simulation data can be merged to

train a general model for experimental data when lacking of

sufficient training data in real-world environment.
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In summary, our contributions are two-fold: (i) We applied TDNN to source localization task. Because DNN is a

data-driven technique independent of environmental parameters, it does not rely on prior knowledge of

environmental parameters and exhibits a better robustness than MFP in adverse situations for its strong nonlinear

representation ability. (ii) Simulation data are available for source localization when laking of real environment

training data. Simulation data in close environments can be merged to train a general model.
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𝑎 denotes the complex amplitude of the source, 𝑘𝑚
2 is the eigenvalue

associated with the m-th mode, ψ𝑚(𝑧𝑠) and ψ𝑚(𝑧𝑘) denote the m-th

mode eigenfunctions at the source and receiver, 𝑁(𝑧𝑘) denotes the

additive noise at the k-th sensor, 𝑀 (𝑀 < 𝐾) denotes the mode

number in the water column (higher modes are treated as noise).
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1) Feature extraction

2) DNN analysis

The eigenvectors associated with the modal signal space is taken as the 

input feature of DNN.  

Cost function: MSE

BP algorithm with SGD

Learning rate: 0.001

Batch size: 512

Fig. 1. Block diagram of the proposed method

Fig. 3. Schematic diagram of the simulated acoustic environmental model

• Signal bandwidth: 50-1000Hz

• Source level: 120 dB

• Noise level: 25, 45, 65 dB

• Frame length: 0.68 s

• Feature extraction bandwidth: 100-300 Hz

• Competing method: MFP

• Toolbox: Kaldi

TDNN outperforms MFP in all test condition. 

1) Simulation

2) Experiment
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Fig. 4. Source ranging using the experimental data. (a) shows the result of the feature based method and (b) shows the result of MFP.

The results demonstrate that simulation data is helpful when training data are insufficient. The model

trained by simulation data can also achieve a fairly good performance on experimental data.
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Fig. 2. Architecture of TDNN


