This paper presents a SampleRNN-based neural vocoder for SPSS. The model is composed of a hierarchical structure of GRU layers and feed-forward layers. The model can capture long-span dependencies between acoustic features and waveform sequences. The waveform samples are generated in an autoregressive manner. Objective and subjective performance: the vocoder outperform WaveNet-based neural vocoder and STRAIGHT.

Proposed Method

- Basic unconditional SampleRNN
 - Solid line in figure
 - A waveform generator composed of a hierarchical structure of GRU layers and FF layers in an autoregressive manner
 - Generate one sample conditioned on its previous samples
- SampleRNN-based neural vocoder
 - Figure: conditional SampleRNN model
 - Dotted lines represent the conditional tier added on the top of basic unconditional SampleRNN
 - The input of conditional tier is acoustic features of one frame of samples to be predicted
 - Train to Minimize the cross-entropy
 - Generate one sample conditioned on its previous samples and its corresponding acoustic features

Experiments

- Conditions
 - Database: Chinese corpus with 1000 utterances from a female speaker and English corpus with 1000 utterances from a male speaker. training/validation/test set: 800/100/100
 - Acoustic Features: Composition: 40-order MCCs, 1-order power, 1-order F0, and 1-order binary U/V flag. Type: natural features (R) and predicted features (P).
- Systems: STRAIGHT, WaveNet, SampleRNN
- Comparison of classification accuracy (ACC) and cross entropy (CE) on test set
 - Chinese female: WaveNet SampleRNN WaveNet SampleRNN
 - ACC(%): 19.77 20.59 14.16 14.51
 - CE: 2.7427 2.6983 3.2304 3.1570
 - SampleRNN > WaveNet
 - SNR: distortion in time domain
 - MCD: distortion in mel-cepstrum
 - F0-RMSE and V/UV error: distortion in F0
 - SampleRNN > WaveNet > STRAIGHT
 - From SNR, neural vocoders can recover phase information more accurately.
- Note: Results in English corpus shown in paper
- Average preference scores (%) on speech quality using the Chinese corpus
 - STRAIGHT WaveNet SampleRNN N/P
 - R: 10.55 -- 55.05 34.40
 - P: 9.13 -- 54.80 36.07
 - Note: Results in English corpus shown in paper
- Time consumed for generating one second speech was 91.89s for the SampleRNN-based neural vocoder

Proposed Method

- Comparison of neural vocoder and conventional vocoder
 - Conventional vocoder: based on the source-filter model. The vocoder (e.g. STRAIGHT) loses the spectral details and phase information and ignores the nonlinear effects in practical speech production.
 - Neural vocoder: convert acoustic parameters into speech by a designed neural network (e.g. WaveNet and SampleRNN) directly. The neural vocoder can overcome the deficiencies of conventional vocoder.

Experiments

- Comparison of distortion on the test set of the Chinese corpus
 - SNR (dB): 2.4994 4.7093 5.1987
 - MCD (dB): 1.5744 1.6919 1.4960
 - F0-RMSE (cent): 20.6821 14.9475 11.4926
 - V/UV error (%): 2.9172 3.5552 3.1725
 - SNR: distortion in time domain
 - MCD: distortion in mel-cepstrum
 - F0-RMSE and V/UV error: distortion in F0
 - SampleRNN > WaveNet > STRAIGHT
 - From SNR, neural vocoders can recover phase information more accurately.
 - Note: Results in English corpus shown in paper

Average preference scores (%) on speech quality using the Chinese corpus

- R: 10.55 -- 55.05 34.40
- P: 9.13 -- 54.80 36.07
- Note: Results in English corpus shown in paper

Time consumed for generating one second speech was 91.89s for the SampleRNN-based neural vocoder.

Note: Results in English corpus shown in paper