UNBIASED DISTANCE BASED NON-LOCAL FUZZY MEANS

Xiaoyao Li ^{1,2}, Yingcong Zhou ², Jing Zhang ¹, Lianhong Wang ¹

¹ College of Electrical and Information Engineering, Hunan University, Changsha 410082, China ² Department of Computer and Information Science, University of Macau, Macau 999078, China Email: Ixyimayday@gmail.com, yicongzhou@umac.mo

INTRODUCTION

Image denoising: It aims at removing the noise effectively and also performing well in detail preservation.

Non-local Means (NLM):

Given a noisy image as $\mathbf{Y} = \mathbf{X} + \mathbf{N}$, where \mathbf{X} is a clean image and \mathbf{N} is a noise model, NLM calculates the weight ω_{ij} for each pixel in a search window S_i , and then obtains the target patch $\hat{\mathbf{X}}_i$ as

$$\omega_{ij} = \exp(-\frac{||\mathbf{Y}_i - \mathbf{Y}_j||^2}{h^2}), \qquad \hat{\mathbf{X}}_i = \frac{\sum_{j \in \mathbf{S}_i} \omega_{ij} \mathbf{Y}_j}{\sum_{i \neq i} \omega_{ii}}.$$

Optimization Models											
Method	Optimization Model										
Mean Filter	$\hat{\mathbf{X}}(i) = \underset{\mathbf{X}(i)}{\arg\min} \sum_{j \in \mathbf{S}_i} (\mathbf{X}(i) - \mathbf{Y}(j))^2$										
Gaussian Filter	$\hat{\mathbf{X}}(i) = \arg\min_{\mathbf{X}(i)} \sum_{j \in \mathbf{S}_i} \omega_{ij} \left(\mathbf{X}(i) - \mathbf{Y}(j) \right)^2$										
Median Filter	$\hat{\mathbf{X}}(i) = \arg\min_{\mathbf{X}(i)} \sum_{j \in \mathbf{S}_i} \mathbf{X}(i) - \mathbf{Y}(j) $										
NLM	$\hat{\mathbf{X}}_i = rgmin_{\mathbf{X}_i} \sum_{j \in \mathbf{S}_i} \omega_{ij} \mathbf{X}_i - \mathbf{Y}_j ^2$										
NLEM	$\hat{\mathbf{X}}_i = rgmin_{\mathbf{X}_i} \sum_{j \in \mathbf{S}_i} \omega_{ij} \mathbf{X}_i - \mathbf{Y}_j $										
INLEM	$\hat{\mathbf{X}}_i = rgmin \sum \sqrt{\omega_{ij}} \mathbf{X}_i - \mathbf{Y}_j $										

PROPOSED METHOD

UDNLFM

Using this combined unbiased distance, we introduce the optimization model of UDNLFM as

$$\{\hat{\mathbf{X}}_{i}, \hat{\omega}_{ij}\} = \underset{\mathbf{X}_{i}, \omega_{ij}}{\operatorname{arg\,min}} \sum_{j \in \mathbf{S}_{i}} \omega_{ij} \mathbb{D}_{c}^{2} (\mathbf{X}_{i}, \mathbf{Y}_{j}).$$

In order to solve this optimization problem, we initialize $\hat{\mathbf{X}}_{i}^{(0)} = \mathbf{Y}_{i}$ and then update ω_{ij} and $\hat{\mathbf{X}}_{i}$ alternatively using the following two equations.

Limitation:

NLM and its improvements consider weight w_{ij} as a constant, which means they only calculate ω ij once and keep it unchanged during later iterative denoising processes. This is improper because the denoised image and patch similarity will change after each iteration.

Our contributions:

- We propose three unbiased distances, namely pixelpixel unbiased distance, patch-patch unbiased distance and combined unbiased distance, which are robust to measure the similarity between image pixels or between image patches.
- We propose Unbiased Distance based NLFM (UDNLFM), which considers weight ω_{ij} as a variable and updates its value in each denoising iteration via computing the combined unbiased distances between patches.

 $\mathbf{\tilde{X}}_i \quad j \in \mathbf{S}_i$ $\hat{\mathbf{X}}_i = \operatorname*{arg\,min}_{\mathbf{X}_i} \sum_{j \in \mathbf{S}_i} f_{ij} ||\mathbf{X}_i - \mathbf{Y}_j||^2$ **PNLM** $\{\hat{\mathbf{X}}_{i}, \hat{\omega}_{ij}\} = \operatorname*{arg\,min}_{\mathbf{X}_{i}, \omega_{ij}} \sum_{j \in \mathbf{S}_{i}} \omega_{ij}^{m} ||\mathbf{X}_{i} - \mathbf{Y}_{j}||^{2}$ **NLFM**

Unbiased Distances

• squared pixel-pixel unbiased distance $\mathbb{D}_{U}^{2}(\mathbf{Y}(i), \mathbf{Y}(j)) = (\mathbf{Y}(i) - \mathbf{Y}(j))^{2} - 2\sigma^{2}$ • squared patch-patch unbiased distance $\mathbb{D}_{U}^{2}(\mathbf{Y}_{i}, \mathbf{Y}_{j}) = ||\mathbf{Y}_{i} - \mathbf{Y}_{j}||^{2} - 2||\mathbf{P}||\sigma^{2}$

 $\mathbb{D}_{\mathbf{U}}^{2}(\hat{\mathbf{X}}_{i},\mathbf{Y}_{j}) = ||\hat{\mathbf{X}}_{i} - \mathbf{Y}_{j}||^{2-||\mathbf{P}|| \left(\sum_{l \in \mathbf{S}_{i}} \omega_{il}^{2} - 2\omega_{ij} + 1\right)\sigma^{2}$

where
$$\sum_{l \in \mathbf{S}_i} \omega_{il} = 1$$
 and $\mathbf{X}_i = \sum_{l \in \mathbf{S}_i} \omega_{il} \mathbf{Y}_l$.

• squared combined unbiased distance $\mathbb{D}_{c}^{2}(\hat{\mathbf{X}}_{i}, \mathbf{Y}_{j}) = \alpha \cdot \max\left[0, \mathbb{D}_{u}^{2}(\hat{\mathbf{X}}_{i}, \mathbf{Y}_{j})\right] + \beta \cdot \left(\bar{\hat{x}}_{i} - \bar{\hat{x}}_{j}\right)^{2}$

 $\overline{\hat{x}}_i$ and $\overline{\hat{x}}_j$ are average pixel values of the related denoised patch. α and β are trade-off parameters.

Algorithm 1 UDNLFM

Input: The noisy image **Y**, the radius of patch k, the radius of search window s and other parameters h, h_s, α, β .

- Step 1: Extract a patch \mathbf{Y}_i with radius k centered at each pixel i in \mathbf{Y} .
- Step 2: For each pixel *i*, do

(a) Use X̂_i⁽⁰⁾ = Y_i as initial values, and iteratively find {X̂_i, ŵ_{ij}} = arg min ∑<sub>X_i, ω_{ij} D_c²(X_i, Y_j) by Eq. (9) and (10).
(b) Assign X̂(i) as the center pixel value in X̂
</sub>

(b) Assign $\hat{\mathbf{X}}(i)$ as the center pixel value in $\hat{\mathbf{X}}_i$.

Output: Denoised image $\hat{\mathbf{X}}$.

EXPERIMENTS

Average values of (a) PSNR and (b) SSIM on all the test images.

Denoised results of the *lena* image with noise $\sigma = 20$: (a) NLM; (b) NLEM; (c)

PSNR and SSIM results of UDNLFM and other methods at noise levels σ =10,20,...,100

-																		1					
			PSNR(dB)										SSIM(%)										
Image	Method $\setminus \sigma$	10	20	30	40	50	60	70	80	90	100	10	20	30	40	50	60	70	80	90	100		
c.man	NLM	31.49	27.98	24.46	22.61	21.50	20.96	20.43	19.87	19.64	19.43	87.86	81.97	76.29	71.78	67.99	65.33	62.98	60.16	58.25	56.77		
	NLEM	31.37	28.11	25.16	23.26	22.27	21.96	21.53	20.98	20.76	20.40	88.52	81.98	74.72	68.13	61.65	56.93	52.17	47.50	43.11	40.38		
	INLEM	31.80	27.81	25.81	24.08	22.76	22.25	21.64	20.96	20.60	20.14	90.38	81.50	73.55	65.96	57.69	51.85	46.29	41.17	36.76	33.86		
	PNLM	32.36	28.89	27.23	26.06	24.84	24.05	22.97	22.05	21.69	21.01	92.49	85.85	81.54	78.60	75.02	71.99	68.44	64.61	62.58	58.99		
	LJS-NLM	33.06	29.36	26.94	25.25	23.77	22.97	22.09	21.20	20.78	20.20	92.30	85.83	79.49	74.92	69.20	64.70	60.09	54.72	50.63	46.97		
	NLFM	32.15	28.14	26.16	24.75	23.38	22.72	21.99	21.23	20.88	20.40	91.60	82.72	75.58	69.24	61.51	55.74	50.13	44.87	40.28	37.27		
	UDNLFM	32.98	29.37	27.64	26.44	25.13	24.37	22.41	22.45	22.01	21.36	92.21	85.70	82.13	79.55	75.94	73.83	69.13	66.49	63.88	60.64		
	NLM	31.58	26.49	24.23	22.85	22.00	21.38	20.84	20.48	20.27	20.07	87.79	77.42	71.07	66.27	62.45	59.39	56.91	54.93	53.45	52.26		
lena	NLEM	31.44	27.06	25.05	24.01	23.34	22.90	22.40	21.77	21.42	21.03	88.50	79.29	73.16	68.59	63.93	59.67	54.95	50.51	46.60	43.25		
	INLEM	31.38	27.73	25.75	24.43	23.55	22.95	22.30	21.57	21.08	20.60	89.49	81.27	73.70	67.19	60.91	55.44	49.74	44.78	40.48	37.09		
	PNLM	32.16	28.76	27.10	25.90	24.61	23.74	22.89	21.97	21.58	21.15	91.03	84.83	79.71	75.26	70.49	66.42	62.90	58.85	56.02	53.96		
	LJS-NLM	32.59	28.66	26.52	24.89	23.62	22.67	21.74	21.00	20.54	20.13	91.10	83.51	77.46	71.90	66.01	60.90	55.96	51.41	47.57	44.97		

INLEM; (d) PNLM; (e) LJS-NLM; (f) NLFM; (g) UDNLFM; (h) Clean image.

Denoised results of the *cameraman* image with noise $\sigma = 60$: (a) NLM; (b) NLEM; (c) INLEM; (d) PNLM; (e) LJS-NLM; (f) NLFM; (g) **UDNLFM**; (h) Clean image.

ACKNOWLEDGEMENT

This work was supported in part by the Macau Science and Technology Development Fund under Grant FDCT/016/2015/A1 and by the

Research Committee at University of Macau under Grant MYRG2016-00123-FST.