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PROPOSED METHOD RESULTS OBTAINED WITH STATIONARY NOISE

[. GPLVM-based reconstruction of STFT mag- | | ¢ Database: CHTTL [2], which includes 100 :
nitude speakers (50 males and 50 females) who said the e |
First, we investigate the feasibility and applicabil- numbers zero to nine consecutively in Mandarin S
ity of GPLVM [1] for speech enhancement. The only once. Each complete utterance lasted 5-6
reconstruction is performed on magnitude spec- seconds, and was sampled at 8 kHz. i

trum. Each frequency band Y ; € R®! isindepen- | | ¢ Noise types: white, babble and factory os|
dently regarded as a GP with noise added, e SNR levels: 5, 10, 15 and 20 dB N 0 2

SNR Level (dB)
Ml Baselines: SR, NMF, LinNMF, and denseNMF

1. CGPLVM outperforms the baselines for various
SNR levels in terms of SSNR.

2. To demonstrate the superiority of the proposed
CGPLVM,, the PESQs were evaluated. The re-

INTRODUCTION

Traditional speech enhancement techniques mod-
ity the magnitude of a speech in time-frequency
domain, and use the phase of a noisy speech to
resynthesize a time domain speech. This work
proposes a complex-valued Gaussian process la-
tent variable model (CGPLVM) to enhance di-
rectly the complex-valued noisy spectrum, mod-
ifying not only the magnitude but also the phase.

PESQ

15

Figure 1: PESQs of proposed methods and baselines
with white noise at various SNR levels.

Yy =9s(Z) + ¢
where Z is the corresponding low-dimensional la-
tent points and €; ~ N(0,87'I). The recon-
structed spectrogram is then combined with the

noisy phase.

MAIN CONTRIBUTIONS

1. The speech spectra across time frames are
modeled as a proper complex Gaussian pro-

Table 1: SSNR of proposed methods and baselines with
white noise at various SNR levels.

SNR level (dB) 5 10 15 20
6.05

cess (GP), which provides a nonlinear map- sults in Figs. 1, 2 and 3 demonstrate that the SR 4.68 697  7.60
bing from a latent space which associated with [I. Phase-incorporating reconstruction of com- CGPLVM achleves a better PESQ than the .other .NMF 449 6.70 8.39 ?.32
ezl TETIE @rs e methods which do not consider the phase infor- LinNMF 560 807 10.11 11.84

speech components to speech space. P . ,
mation of a speech at any SNR level. denseNMF 561 8.10 10.08 11.77
. Rather than estimating the phase and magni- | | To incorporate the estimation of phase into the | |3. The enhanced audio samples obtained using the GPLVM 563 8.12 10.10 11.87
tude separately, the complex-valued STFT co- | | reconstruction, the complex-valued STFT coetfi- proposed methods are available online [3]. CGPLVM 593 8.42 10.48 13.06

cients are directly enhanced. Similar to GPLVM,
each frequency band U; € C%? is viewed as a

efficients are directly estimated that modifies

both the magnitude and the phase of a noisy RESULTS OBTAINED WITH NON-STATIONARY NOISE

speech. complex GP,
Table 2: SSNR of proposed methods and baselines with , - v S pern P4 M oL
. Our CGPLVM integrates phase estimation U =hs(V)+ey (2) | | babble noise at various SNR levels. ) e
into a speech enhancement procedure, signifi- - . | o o . SNR Tevel (dB) 5 T i 50 | o .
cantly improving the quality of the enhanced | | Where V is the complex-valued low-dimensiona %< allAP
] : : : SR 226 423 581 6.90 71
speech. atent points and e, has a complex Gaussian dis- g
| % 0 - NMEF 250 4.68 643  8.05 1
tribution CN(0,57'1,0). The hyperparameters .
and low-dimensional latent points can be learned LinNME 2ol 464 6,61 9.21 ol
by maximizing Eq. (3) denseNMF 238 442 625 827 L O . .
CONCLUSION & FUTURE WORK 4 & =4 GPLVM 283 555 778 9B6 L0 of Dromeeed methods and baselin
CGPLVM  3.00 596 849 10.39 sHi= = 5 Of proposed MEhods and baseunes

e This paper develops two latent variable model

Inp(U|V)=-FQTInm — Fln|K. + 7' 3

with babble noise at various SNR levels.

based methods for speech enhancement. — trace((K, + ﬁ_ll)_lUUH) Table 3: SSNR of proposed methods and baselines with , - e e ] ey EJcaeien
c factory noise at various SNR levels. o ) . o

o Experimental results indicate that the proposed | i1 Reconstruction SNR level (dB) 5 10 15 20 il

methods have significantly higher SSNR and | SR 390 561 678 754 >

PESQ values than baseline methods. For a noisy speech signal, a binary mask M, which NMF 3.84 590 723 843 )
e In the future, we would like to extend the cur- | | ' e.st1mated oIS POWET §pectral density (PSD), LAV 086 043 590 1075

: is firstly employed to obtain a masked spectra S, denseNMF 370 622 850 10.49
rent framework to deeper architectures that , / ST , 5 o 20
mav further boost its performance the low-dimensional latent points v, of ¢-th incom- GPLVM 478 740 928 10.77 . . |
y P ~ plete spectrum §; can be obtained by CGPLVM 511 7.77 985 11.32 Figure 3: PESQs of proposed methods and baselines
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(4)

vy = argmaxInp(U,s; | V,vy)

The t-th spectrum s; can be reconstructed us-
ing a predictive approach, which is given
by s, = UK.+ p7'I)"'k, where k =
ke(Vi,Vi), ke(Va, Vi), ooy ke(Vor, Vi)]

REFERENCES

with factory noise at various SNR levels.

[1] N. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In Proc. NIPS, volume 16,

pages 329-336, 2004.

3] Audio samples. https://goo.gl/WEFChTd.

2] CHTTL database. http://www.aclclp.org.tw/use_mat_c.php#chttl.




