FAST SAMPLING OF GRAPH SIGNALS WITH NOISE VIA NEUMANN SERIES CONVERSION

Fen Wang*, Gene Cheung*, Yongchao Wang*

*Xidian University, Xi’an, China; York University, Toronto, Canada

GRAPH SIGNAL PROCESSING

- Signals on irregular data kernels: $q = (V, W)$
 - Combinatorial Laplacian matrix $L = D - W$ where degree matrix D is a diagonal matrix with node degrees $d_i = \sum_j w_{ij}$
 - Graph Fourier transform (GFT): $L = V\Sigma V^T$
 - Bandlimited graph signal $x = \hat{x} V$ where the GFT coefficient \hat{x} are non-zero only at the first K elements
 - Image patch on 2D grid: $x = \hat{x} V$

SAMPLING OF NOISY BANDLIMITED GRAPH SIGNAL

- Motivation: sensing (acquiring samples) is expensive.
- Goal: sampling the most informative nodes for signal reconstruction.
- Signal model: noisy bandlimited graph signal $x = \hat{x} V + \tilde{x}$

Previous works:

- Aggressive sampling
- Random sampling
- Local reconstruction
- Residual selection

APPLICATIONS

- Sensor selection
- Active learning
- Matrix completion

AUGMENTED A-OPTIMAL GRAPH SAMPLING

- A-optimal sampling based on least square reconstruction: $\hat{x} = CV_x$ where C is a sampling operator corresponding to G
 - Noisy observation: $y = \hat{x} + n$
 - Matrix completion: $\hat{x} = \hat{x} V (CV_x)^{-1} y$
 - Reconstruction MSE: $\mathbb{E}[(\hat{x} - \hat{x})^2]$

RECOMMENDED OPTIMALITY CRITERION

- Perfect reconstruction: $\mathbb{E}[(\hat{x} - \hat{x})^2] = 0$
- Minimal variance unbiased reconstruction: $\mathbb{E}[(\hat{x} - \hat{x})^2] = \text{Var}(x) / \text{SNR}$

Augmented A-optimal sampling criterion

- $C = \arg \min \mathbb{E}[(\hat{x} - \hat{x})^2]$

NOISY NEUMANN SERIES THEOREM

If the absolute value of eigenvalues of A are all in the range $[\lambda-1, \lambda+1]$, then its Neumann Series converges: $\sum_{i=0}^{\infty} A^i = \frac{1}{\lambda I - A}$

PROPOSED OBJECTIVE FUNCTION

- Minimize $\mathbb{E}[(\hat{x} - \hat{x})^2]$

SHIFT PARAMETER DESIGN

- Design of μ based on inverse computation stability
- Inverse of matrix G_{μ} unstable if μ is extremely small since its eigenvalues are in $[\mu, 1 + \mu]$.
- We propose to bound the condition number of G_{μ}

RECOMMENDED MSE of different μ at 0dB

| μ | MSE
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>100.0</td>
</tr>
<tr>
<td>0.50</td>
<td>100.0</td>
</tr>
<tr>
<td>0.75</td>
<td>100.0</td>
</tr>
<tr>
<td>1.00</td>
<td>100.0</td>
</tr>
<tr>
<td>1.25</td>
<td>100.0</td>
</tr>
<tr>
<td>1.50</td>
<td>100.0</td>
</tr>
<tr>
<td>1.75</td>
<td>100.0</td>
</tr>
<tr>
<td>2.00</td>
<td>100.0</td>
</tr>
<tr>
<td>2.25</td>
<td>100.0</td>
</tr>
<tr>
<td>2.50</td>
<td>100.0</td>
</tr>
<tr>
<td>2.75</td>
<td>100.0</td>
</tr>
<tr>
<td>3.00</td>
<td>100.0</td>
</tr>
<tr>
<td>3.25</td>
<td>100.0</td>
</tr>
<tr>
<td>3.50</td>
<td>100.0</td>
</tr>
<tr>
<td>3.75</td>
<td>100.0</td>
</tr>
<tr>
<td>4.00</td>
<td>100.0</td>
</tr>
<tr>
<td>4.25</td>
<td>100.0</td>
</tr>
<tr>
<td>4.50</td>
<td>100.0</td>
</tr>
<tr>
<td>4.75</td>
<td>100.0</td>
</tr>
<tr>
<td>5.00</td>
<td>100.0</td>
</tr>
</tbody>
</table>

EXPERIMENTAL RESULTS

- In experiments, we set $K_0 = 100$. Reconstruction MSE is not sensitive to the choice of μ in community graph at 0dB.

REFERENCES