

Speech Emotion Recognition Using Deep Neural Network Considering Verbal and Nonverbal Speech Sounds

Kun-Yi Huang, <u>Chung-Hsien Wu</u>, Qian-Bei Hong, Ming-Hsiang Su and Yi-Hsuan Chen

Department of Computer Science and Information Engineering, National Cheng Kung University, TAIWAN

Outline

- Introduction
- Database
- Proposed Methods
- Experimental Results
- Conclusions

Introduction

- Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction. It has a potentially wide applications, such as chatbots, banking, call centers, car board systems, computer games etc.
- In the past, research on speech emotion recognition mainly focused on discriminative emotion features and recognition models.
- Only few existing emotion recognition systems focused on nonverbal part of speech in speech emotion recognition.
 - In real-life communication, nonverbal sounds, such as laughter, cries or emotion interjections, within an utterance play an important role for emotion recognition.
- This work adopted the nonverbal parts to improve the performance of emotion recognition

Goal

Develop a speech emotion recognition mechanism that considers verbal and nonverbal parts of speech signals.

Issues to be considered

Emotion database

A spontaneous speech emotion corpus containing emotional nonverbal sounds in speech

Recognition unit

Speech/sound segment useful to characterize emotion information

Temporal Change of Emotion

A sequential model (seq2seg) for characterizing the temporal change of emotions in a conversation

Literature Review – Emotion Database

Name	Language	A/S	Data	Label
eNTERFACE [E Douglas-Cowie et al.]	English	Acted	Audio, Video	Discr.
EmoDB [F. Burkhardt et al.]	German	Acted	Audio	Discr.
IEMOCAP [C. Busso et al.]	English	Acted& Spont.	Audio, Video, MOCAP	Discr.
RECOLA [F. Ringeval et al.]	French	Spont.	Audio, Video, ECG, EDA	Conti.
CHEAVD [Y. Li et al.]	Chinese	Spont.	Audio, Video	Discr.
NNIME [H. C. Chou et al.]	Chinese	Spont.	Audio, Video, ECG	Discr. & Conti.

NNIME, a spontaneous speech emotion corpus, containing emotional nonverbal sounds in speech, was used for this study.

Literature Review – Recognition Unit

Segment unit	Audio unit	Data	Description
Frame/phoneme/word/utterance	Turn	IEMOCAP, English	Segment based SER using RNN [Tzinis et al., 2018]
Sentence/Second	Turn	IEMOCAP, English	Attentive CNN based SER with different length, features, type of speech [Neumann et al., 2017]
Prosodic action unit	Sentence	English	SVM based SER with discrete intonation patterns [Cao et al., 2014]
Sentence/Word/Syllable	Sentence	IITKGP-SESC, Telugu	SER with local and global prosodic features [Sreenivasa Rao et al., 2012]

Discrete prosodic phenomena can provide complementary information in prediction of emotion. [Cao et al., 2014]

Literature Review –Recognition Model

Method	Input feature	Language	Year
SVM	Prosodic feature	Telugu	[K. S. Rao et al., 2013]
Split vector quantization + naive Bayes	Bag of Audio Words representation	German	[F. B. Pokorny et al., 2015]
Bidirectional LSTM	CNN-extracted vector	French	[G. Trigeorgis et al., 2016]
Attentive CNN	Log-Mels, MFCCs, eGeMAPS	English	[N. T. V. Michael Neumann et al., 2017]
CLDNN	Log-Mels, MFCCs	English	[CW. Huang et al.,2017]

A sequential model (seq2seg) is helpful for characterizing the temporal change of emotions in a conversation

Problem – Recognition Unit

Problem

Appropriate emotion unit of emotion expression should have various length for recognition. [Tzinis et al., 2018]

Proposed method:

We segment the raw audio input utterances with prosodic features as basic emotion unit, which is regarded as a prosodic phrase (PPh).

Problem – Nonverbal Interval Extraction

Problem

□Non-verbal part of an utterance is helpful for human to recognize emotion.

Proposed method:

Define **sound types**, such as shout, breath(sobbing), ...

- **Segment** speech utterance into verbal and nonverbal segments.
- **Extract** sound type features

Problem – Emotion Change in a Conversation

Problem:

There are different degree of emotion expression in different time periods within a speaking turn, so it should be a sequential emotion result to characterize an utterance.

Proposed method:

We extract emotion type and sound type features for each segment of input utterance.
Use LSTM-based Seq-to-Seq model to obtain sequential emotion recognition result.

Corpus – NNIME Speech Database

11

NNIME (NTHU-NTUA Chinese Interactive Multimodal Emotion Corpus)

- Audio, video, and ECG data
- Spontaneous emotional speech
- Recorded by 44 speakers
- □ 6 types of emotion scenario, 101 sessions, 673.02 mins (11.22 hrs)

Emotion type	Angry	Frustration	Нарру	Neutral	Sad	Surprise
Number of sessions	15	19	15	18	18	16

Example of scenario setting

Emotion: Angry

Scenario setting: Before going out in the morning, the woman wanted to clean the house while the man was in a hurry. Later, the woman delayed again because she lost some stuff. The man was very angry while the woman was also mad with the man's temper.

Data Analysis

Verbal data

7 types of emotions

Nonverbal data

■ 3 human sound types+ silence

Sound Type	Description
Shout	shout, scream, howl
Laughter	laugh, giggle
Breathing	sigh, yawn, sob, respire
Silence	silence, noise, audience sound
Verbal	speech

Data Statistics

□ We segmented all sessions in NNIME into **4766** single speaker dialogue turns.

□ Number of segments:14636, duration = 4.3hr (15492.5 secs, μ = 3.25, σ = 5.42).

Emotion type	Anger	Anxiety	Sadness	Surprise	Neutral	Boring	Нарру	Total
Segment number	900	1090	415	1136	5212	537	753	14636

Verbal segments

Emotion type	Anger	Anxiety	Sadness	Surprise	Neutral	Boring	Нарру	Total
Segment number	863	1032	317	1068	5080	491	533	9384

Nonverbal segments

Sound type	Laugh	Breath	Shout	Silence	Total
Segment number	183	409	67	4593	5252

System Framework

Prosodic Phrase Annotation

- Annotate Prosodic Phrase based on the following criteria using *Praat*:
 - Pause (silence for more than 0.3 second)
 - Final rising intonation (Rising F0)
 - Lengthening of last word
 - Sharp fall in intensity (Falling intensity)
 - Modified wrong annotation of silence interval

Audio Data Segmentation

Silence interval detection: produced by *Praat*

- **Verbal/ Non-verbal Segmentation**:
- 1. Extract frame-based 384-dim audio feature by openSMILE [F. Eyben et al.]
- 2. Calculate probability sequence of verbal/non-verbal frames by SVM
- 3. Smoothing the probability sequence and compute boundary score

$$\delta(P) = \left|\sum_{i=1}^{3} (4-i)^2 * P[b-i] - \sum_{i=1}^{3} (4-i)^2 * P[b+i]\right|$$

4. If boundary score > threshold, set it as a boundary.

Prosodic Phrase Detection: PPh detected by *PPh Autotagger*

[Domínguez et al., 2016a]

Feature Vector for each Segment

17

- Using raw waveforms as input of CNN. [Bertero et al., 2017]
- 4 sound types and 7 emotion types
- The last hidden layer output is used as feature vector for recognition.

Emotion type

Attentive Bi-LSTM based Seq-to-Seq Model

18

The sound features for nonverbal segment and emotion features for each segment were adopted as feature vector X_i to feed to the LSTM based Seq-to-Seq emotion recognition model with attention.

Emotion output Sequence

 $X_i = S_i \oplus E_i$ $i = 1, \dots, N$

N = number of segments in the utterance

Experimental Results - Evaluation on verbal/nonverbal segmentation

19

- 300 dialog turns from each pre-specified emotion and duration range were manually labeled for evaluation
 - Features with dimensionalities of 32 and 384 were selected with window sizes of 100ms and 200ms and a shift size of 50ms. F = 32 F = 32 F = 384 F = 384
 - A boundary is labeled correctly if the detected label is within **100ms** of the manually labeled time.
 - The precision, recall, F1 score was used for evaluation
 - F is feature dimension
 - W is the window size
 - S is the shift size
 - FM (100ms) is full match
 - PM (200ms) is partial match

		F =	= 32	F =	: 32	F =	384	F =	384
		W =	100	W = 200		W =	100	$\mathbf{W} = 200$	
		S =	= 50	S = 50		S = 50		S = 50	
		FM	PM	FM	PM	FM	PM	FM	PM
	Pre	0.24	0.46	0.23	0.47	0.34	0.62	0.31	0.57
0.6	Rec	0.31	0.60	0.29	0.58	0.37	0.65	0.36	0.66
	F1	0.27	0.52	0.25	0.51	0.35	0.63	0.33	0.61
	Pre	0.24	0.46	0.23	0.47	0.37	0.66	0.32	0.53
0.8	Rec	0.31	0.60	0.28	0.57	0.37	0.64	0.36	0.64
	F1	0.27	0.52	0.25	0.51	0.37	0.64	0.34	0.61
	Pre	0.25	0.48	0.23	0.49	0.38	0.67	0.33	0.59
1	Rec	0.30	0.59	0.27	0.56	0.35	0.60	0.35	0.62
	F1	0.27	0.53	0.25	0.51	0.36	0.63	0.34	0.60
	Pre	0.26	0.50	0.23	0.50	0.41	0.69	0.35	0.61
1.2	Rec	0.30	0.58	0.26	0.55	0.32	0.54	0.34	0.58
	F1	0.28	0.54	0.24	0.52	0.36	0.61	0.34	0.59

Experimental Results - Evaluation on Feature Extraction

- This work selected a number of filters and different sizes in the adaptive pooling layer based on the accuracy of emotion classification
- The results of comparison between the methods using raw speech signal and extracted acoustic feature sets were obtained
- Performance of emotion type classification

Input	Best parameters	Accuracy
Speech signal	Filter number = 100, Kernel size = 512, step = 256, pooling = 2	30.10%
32-dim LLDs	Filter number = 150, Kernel size = 2, step = 1, pooling = 2	26.10%
32-dim LLDs with 12 functionals	Filter number = 100, Kernel size = 2, step = 1, pooling = 10	21.20%

Experimental Results - Evaluation of Feature Extraction

Performance of sound type classification

Input	Best parameters	Accuracy
Speech signal	Filter number = 100, Kernel size = 512, step = 256, pooling = 2	54.90%
32-dim LLDs	Filter number = 100, Kernel size = 2, step = 1, pooling = 2	53.63%
32-dim LLDs with 12 functionals	Filter number = 250, Kernel size = 2, step = 1, pooling = 10	47.95%

The last hidden layer outputs of the CNN emotion/sound models were concatenated and fed to the LSTM-based sequence-to-sequence model for emotion recognition

Experimental Results - Evaluation of Emotion Recognition

- The hidden layer sizes of the LSTM were selected from 32, 64, 128, 256, and 512 to achieve the highest accuracy of emotion recognition
 - The proposed method achieved 52.00% when the hidden size of the LSTM was set to 128
- This work compared the performance of the proposed method with traditional emotion recognition models with frame-based acoustic features or raw speech signal as input

	Input	Best parameters	Accuracy
Proposed method	CNN-based feature extraction	Hidden size = 128	52.00%
LSTM	32-dim LLDs	Hidden size = 256	44.30%
CNN	Speech signal	Pooling = 2, filter number = 100	30.10%

Conclusion and Discussion

Conclusion

- Speech emotion recognition considering nonverbal interval and types of sound achieved a better performance.
- Sequence-to-sequence model can characterize emotional change in a dialogue turn.

Discussion

- Emotion expression in spontaneous speech is very diverse and difficult to be labeled with one specific emotion.
- The other difficulty of spontaneous speech emotion recognition is the background noise. Preprocessing of audio data is an important issue.
- There are still many sound types in our daily conversation. The types of emotional sound event should be better defined.

Result Demo – Inside

0.2 intensity [dB] amplitude 111 0.0 -0.2 - \cap 5 0 1 2 З 4 6 7 happy happy happy - 60 0.1 intensity [dB] amplitude 110 0.0 20 -0.1 -- 0 0 2 3 4 sad sad sad sad

Result Demo – Outside

These audios are from NNIME sessions which are used for training.

Questions?