Introduction

- Tackle privacy risks encountered in Acoustic Sensor Network applications
- Illustrate concept with a smart office and challenging competing goals scenario
- Balance competing goals: utility (gender discrimination) & privacy (speaker identification)

Defender vs. Attacker

- Previous work [1]:
 - traditional feature representation carries significant speaker-dependent data
 - adversarial feature extraction successfully used but depends on attacker configuration
- More general approach: privacy-aware variational information feature extraction:
 - inspired by variational information autoencoders [2] which use information minimization
 - the encoding variable is a compact stochastic feature representation
 - the proposed system is described in Fig. 1

Train defender

- \[\min_{\theta_f, \theta_g, \beta} \mathbb{E}_{p(x|z)}[\log p(x|z)] + \beta I(X; Z) \] (1)
- \(\theta_f, \theta_g, \beta \) are weights and biases; \(\Gamma \) and \(f \) are true and predicted gender labels
- \(I(X; Z) \) is the mutual information between input set \(X \) and encoding set \(Z \)
- \(\beta \) is a budget scaling factor for controlling information minimization
- \(I(X; Z) \) is computationally challenging, find analytical upper bound \(I_{\text{max}}(X; Z) \geq I(X; Z) \):
 - \[I(X; Z) = \int p(z|x)\log p(z|x) \, dz - \int p(z)\log p(z) \, dz \] (2)
- construct encoding variable \(z = \sigma(x) = \epsilon + \mu(x) \), where \(\epsilon \sim N(0, 1) \)
- now \(p(z|x) \) follows a Gaussian distribution \(N(\mu(x), \sigma(x)) \)
- backpropagation can be efficiently performed by updating \(\theta_f \) and \(\theta_g \) [3]

Experimental Results

- Speaker identification risks can be drastically reduced without significantly deteriorating gender discrimination accuracy
- Each input \(X \) gets mapped to a distribution rather than a unique \(Z \) which in turn, controlled by \(\beta \), ignores as many details of \(X \) as possible
- Proposed concept can be further expanded to other utility vs. privacy applications

Conclusions and Outlook

References