Multiview Sensing with Unknown Permutations: An Optimal Transport Approach
Yanting Ma*, Petros Boufounos*, Hassan Mansour*, Shuchin Aeron*
*Mitsubishi Electric Research Laboratories (MERL)
#Department of Electrical and Computer Engineering, Tufts University

Introduction

- **Motivation**
 - Traditional security checkpoint requires each person to stand still while being scanned --> slowdowns and long queues
 - By combining the latest developments in optical and depth sensing, tracking, and array processing, we wish to allow scanning of moving individuals with irregular motion as they pass the scanner
 - In this work, we assume an imperfect motion tracking system is available and tackle the image reconstruction task while simultaneously correcting the tracking error

- **Simplified model**
 - Goal: reconstruct \(\mathbf{x} \)
 - As the object \(\mathbf{x} \) moves, it is measured in a sequence of frames. Due to the motion, it undergoes a series of deformations which determines its pose in each frame of the measurements.
 - Motion tracking error is assumed to be corrected by an unknown permutation matrix \(\mathbf{P}_i \)
 - Measurement model for the \(i \)-th view: \(\mathbf{y}_i = \mathbf{A}_i \mathbf{P}_i \mathbf{F} \mathbf{x} + \mathbf{w}_i \)

- **Optimal transport (OT)**
 - A key component of the proposed method
 - Given two probability vectors \(\mathbf{u} \) and \(\mathbf{v} \) and a predefined ground cost matrix \(\mathbf{C} \)
 - Find the optimal coupling \(\mathbf{P} \) between \(\mathbf{u} \) and \(\mathbf{v} \)
 - The ground cost matrix \(\mathbf{C} \) is defined as the sum of all joint probability distributions whose marginals are \(\mathbf{u} \) and \(\mathbf{v} \)
 - When \(M = N \) and \(u = v = \mathbf{1} \), the optimal \(\mathbf{P} \) is a permutation matrix

- **Simulation setup 1**
 - Ground truth pixel value is i.i.d. uniform within each bar
 - Sensing operator \(\mathbf{A} \) has i.i.d. Gaussian entries
 - Number of views is 2
 - Measurement rate is defined as the ratio between total number of measurements (summing over all views) and number of pixels in \(\mathbf{x} \)
 - Increasing number of measurements also increases size of unknown permutation

- **Simulation setup 2**
 - Input SNR is 20dB
 - Fixing number of measurements per view, reconstruction quality improves with increased number of views
 - This can be important for some applications, as the number or measurements can be limited by hardware

Proposed Method

- **Assumptions**
 - Support of \(\mathbf{x} \) is known
 - Permutations moving pixels far away from its original location are less likely (i.e., big tracking error is less likely)

- **Optimization formulation**
 \[
 \min_{\mathbf{P}_i} \sum_i |y_i - \mathbf{A}_i \mathbf{P}_i \mathbf{F} \mathbf{x}| + \beta |\delta(\mathbf{P}_i) + \delta(\mathbf{x} - \mathbf{P}_i \mathbf{F} \mathbf{x})| \]

 \(\beta \) determines the pose in each frame of the measurements.

- **Relaxation of equality constraint**
 \[
 \min_{\mathbf{P}_i} \sum_i |y_i - \mathbf{A}_i \mathbf{P}_i \mathbf{F} \mathbf{x}| + \beta |\delta(\mathbf{P}_i) + \delta(\mathbf{x} - \mathbf{P}_i \mathbf{F} \mathbf{x})| \]

 - Equivalent to the relaxed problem if \(u_i = v_i = 1 \)
 - Efficient algorithms from OT literature (e.g., Sinkhorn iterations and its variants) can be applied to solve for \(\mathbf{P}_i \)
 - Other marginals \(\mathbf{u}, \mathbf{v} \) can also be used to further relax the constraint that \(\mathbf{P}_i \) is permutation

- **Connection to OT**
 \[
 \begin{align*}
 \min & \sum_i |y_i - \mathbf{A}_i \mathbf{P}_i \mathbf{F} \mathbf{x}| + \beta \min_{P_i} & (\mathbf{C}(\mathbf{x}, \mathbf{F} \mathbf{x}, \mathbf{P}_i) \mathbf{P}_i) \\
 \text{subject to} & \mathbf{x} = \mathbf{P}_i \mathbf{F} \mathbf{x} \\
 \end{align*}
 \]

 \(\mathbf{C}(\mathbf{x}, \mathbf{F} \mathbf{x}, \mathbf{P}_i) \) is known

- **Proposed algorithm**
 - Alternating between estimation of \(\mathbf{x} \) and \(\mathbf{x}_i \) in (3)
 - Gradient descent for each subproblem
 - Envelope theorem can be used to compute the gradient of minimization function
 - Marginal \(\mathbf{v}_i \) is uniform over support of \(\mathbf{F} \mathbf{x} \) (known)
 - Marginal \(\mathbf{u}_i \) is uniform over estimated support of \(\mathbf{x}_i \)

- **Extensions**
 - Other similarity measure between \(r[\mathbf{n}] \) and \(r[\mathbf{n'}] \), \(\mathbf{x}_i \) and \(\mathbf{P}_i \mathbf{F} \mathbf{x} \), can be used depending on specific problems
 - Regularization for \(\mathbf{x} \) and \(\mathbf{x}_i \) can be easily incorporated

- **Baseline methods for comparison**
 - Since tracking error is small, a naive method is to ignore \(\mathbf{P}_i \)
 - Alternatively, a more straightforward relaxation of the permutation constraint is to replace it with a differentiable penalty

Summary

- Signal estimation with unknown permutations is challenging
- In practice, some permutations are more likely than others
- We introduced regularization to promote certain type of permutations
- Further relaxation allowed us making connection to optimal transport, which provides tractable algorithms
- Other regularization for permutations (depending on specific problem) may be translated to choosing certain OT ground cost