Low-Rank and Sparse Decomposition for Joint DOA Estimation and Contaminated Sensors Detection with Sparsely Contaminated Arrays

Huiping Huang*† Abdelhak M. Zoubir*†

*Signal Processing Group, Technische Universität (TU) Darmstadt, Germany
†Graduate School of Computational Engineering, TU Darmstadt, Germany

ICASSP 2021
Content

Introduction

Proposed Methods

Simulation Results

Conclusion and Outlook
Overview

Introduction

Proposed Methods

Simulation Results

Conclusion and Outlook
Introduction

- Direction-of-Arrival (DOA) Estimation
- Perfect Array & Sensor Errors

(a) Source localization
(b) Sonar detection
Introduction

- Classical Methods for Sensor Errors
 - Auxiliary sources
 - Perfectly calibrated sensors
Introduction

- Classical Methods for Sensor Errors
 - Auxiliary sources
 - Perfectly calibrated sensors

- Partly Calibrated Array
 - Number of calibrated sensors
 - Positions of calibrated sensors
Introduction

- Classical Methods for Sensor Errors
 - Auxiliary sources
 - Perfectly calibrated sensors

- Partly Calibrated Array
 - Number of calibrated sensors
 - Positions of calibrated sensors

- Sparsely Contaminated Array
 - A few sensors at random positions
 - General case
Contributions:

- Joint DOA estimation and distorted sensors detection
- Problem formulation via low-rank and sparse decomposition (LRSD)
- Problem solved by iteratively reweighted least squares (IRLS)
Overview

Introduction

Proposed Methods

Simulation Results

Conclusion and Outlook
Proposed Methods

Signal Model

Without sensor errors:

\[x(t) = As(t) + n(t) \quad t = 1, 2, \cdots, T \]

- \(x(t) \in \mathbb{C}^M \): array observation
- \(s(t) \in \mathbb{C}^K \): signal waveform
- \(n(t) \in \mathbb{C}^M \): Gaussian noise
- \(T, M, K \): number of snapshots, sensors, and sources, respectively

With sensor gain and phase errors:

\[y(t) = \tilde{\Phi}As(t) + n(t) = I\tilde{\Phi}As(t) + n(t) = 1 - 2 - T \]

\(\tilde{\Phi} = I\Phi\Phi = \text{diag} \{ \gamma_1, -\gamma_2, \cdots, -\gamma_M \} \)

\(\gamma_m = 0 \) for perfect sensors

\(\gamma_m \neq 0 \) for contaminated sensors
Proposed Methods

Signal Model

Without sensor errors:

\[x(t) = As(t) + n(t) \quad t = 1, 2, \cdots, T \]

- \(x(t) \in \mathbb{C}^M \): array observation
- \(A \in \mathbb{C}^{M \times K} \): steering matrix
- \(s(t) \in \mathbb{C}^K \): signal waveform
- \(n(t) \in \mathbb{C}^M \): Gaussian noise
- \(T, M, K \): number of snapshots, sensors, and sources, respectively

With sensor gain and phase errors:

\[y(t) = \tilde{\Gamma}As(t) + n(t) = (I + \Gamma)As(t) + n(t) \quad t = 1, 2, \cdots, T \]

- \(\tilde{\Gamma} = I + \Gamma \)
- \(\Gamma = \text{diag}\{\gamma\} \)
- \(\gamma = [\gamma_1, \gamma_2, \cdots, \gamma_M]^T \)
- \(\gamma_m \begin{cases} = 0, & \text{for perfect sensors} \\ \neq 0, & \text{for contaminated sensors} \end{cases} \)
Proposed Methods

Problem Formulation via LRSD (1 of 2)

Recall: \(y(t) = (I + \Gamma)A s(t) + n(t) \quad t = 1, 2, \cdots, T \)

Collecting all time-snapshots, matrix-form:

\[
Y = (I + \Gamma)AS + N
\]

- \(Y = [y(1), y(2), \cdots, y(T)] \in \mathbb{C}^{M \times T} \)
- \(S \in \mathbb{C}^{K \times T} \)
- \(N \in \mathbb{C}^{M \times T} \)
Recall: \(y(t) = (I + \Gamma) As(t) + n(t) \quad t = 1, 2, \cdots, T \)

Collecting all time-snapshots, matrix-form:

\[
Y = (I + \Gamma) AS + N
\]

- \(Y = [y(1), y(2), \cdots, y(T)] \in \mathbb{C}^{M \times T} \)
- \(S \in \mathbb{C}^{K \times T} \)
- \(N \in \mathbb{C}^{M \times T} \)

Defining \(Z = AS \) and \(V = \Gamma AS \):

\[
Y = AS + \Gamma AS + N = Z + V + N
\]

- \(Z \in \mathbb{C}^{M \times T} \): of rank \(K \), low-rank matrix
- \(V \in \mathbb{C}^{M \times T} \): row-sparse due to the sparsity of diagonal of \(\Gamma \)
Proposed Methods

Problem Formulation via LRSD (2 of 2)

Thanks to the low rank (Z) and row-sparse (V) structures, propose:

$$\min_{Z, V} ||Y - Z - V||_{F}^{2} + \lambda_{1} ||V||_{2,0} + \lambda_{2} \text{Rank}(Z)$$

- $|| \cdot ||_{F}$: Frobenius norm
- $|| \cdot ||_{2,0}$: $\ell_{2,0}$ mixed norm
- Rank(·): matrix rank
Proposed Methods

Problem Formulation via LRSD (2 of 2)

Thanks to the low rank (Z) and row-sparse (V) structures, propose:

$$\min_{Z, V} \| Y - Z - V \|_F^2 + \lambda_1 \| V \|_{2,0} + \lambda_2 \text{Rank}(Z)$$

- $\| \cdot \|_F$: Frobenius norm
- $\| \cdot \|_{2,0}$: $\ell_{2,0}$ mixed norm
- $\text{Rank}(\cdot)$: matrix rank

Convex relaxation:

$$\min_{Z, V} \| Y - Z - V \|_F^2 + \lambda_1 \| V \|_{2,1} + \lambda_2 \| Z \|_*$$

- $\| \cdot \|_{2,1}$: $\ell_{2,1}$ mixed norm
- $\| \cdot \|_*$: nuclear norm, i.e., sum of singular values
Proposed Methods

Problem Solved by IRLS (1 of 2)

Real-valued form:

\[
\min_{\tilde{Z}, \tilde{V}} \| \tilde{Y} - \tilde{Z} - \tilde{V}\|_F^2 + \lambda_1 \|\tilde{V}\|_{2,1} + \lambda_2 \|\tilde{Z}\|_*
\]

\[\tilde{Y} = \begin{bmatrix}
Re\{Y\} & -Im\{Y\} \\
Im\{Y\} & Re\{Y\}
\end{bmatrix} \in \mathbb{R}^{2M \times 2T} \quad \tilde{Z} \in \mathbb{R}^{2M \times 2T} \quad \tilde{V} \in \mathbb{R}^{2M \times 2T} \]
Proposed Methods
Problem Solved by IRLS (1 of 2)

Real-valued form:

\[
\min_{\tilde{Z}, \tilde{V}} \|\tilde{Y} - \tilde{Z} - \tilde{V}\|_F^2 + \lambda_1 \|\tilde{V}\|_{2,1} + \lambda_2 \|\tilde{Z}\|_* \\
\]

\[
\tilde{Y} = \begin{bmatrix}
Re\{Y\} & -Im\{Y\} \\
Im\{Y\} & Re\{Y\}
\end{bmatrix} \in \mathbb{R}^{2M \times 2T} \\
\tilde{Z} \in \mathbb{R}^{2M \times 2T} \\
\tilde{V} \in \mathbb{R}^{2M \times 2T}
\]

Handling the non-smoothness:

\[
\min_{\tilde{Z}, \tilde{V}} f = \|\tilde{Y} - \tilde{Z} - \tilde{V}\|_F^2 + \lambda_1 \|[\tilde{V}, \mu 1]\|_{2,1} + \lambda_2 \|[\tilde{Z}, \mu I]\|_*
\]
Derivatives of the objective function:

\[
\frac{\partial f}{\partial \tilde{Z}} = \tilde{Z}(\lambda_2 Q + 2I) + 2(\tilde{V} - \tilde{Y})
\]

\[
\frac{\partial f}{\partial \tilde{V}} = (\lambda_1 P + 2I)\tilde{V} + 2(\tilde{Z} - \tilde{Y})
\]

- \(P = \text{diag}\left(\left(\|\tilde{V}_1\|_2 + \mu^2\right)^{-\frac{1}{2}}, \cdots, \left(\|\tilde{V}_{2M}\|_2 + \mu^2\right)^{-\frac{1}{2}}\right)\)

- \(Q = (\tilde{Z}^T \tilde{Z} + \mu^2 I)^{-\frac{1}{2}} \)
Derivatives of the objective function:

\[
\frac{\partial f}{\partial \tilde{Z}} = \tilde{Z}(\lambda_2 Q + 2I) + 2(\tilde{V} - \tilde{Y}) \quad \frac{\partial f}{\partial \tilde{V}} = (\lambda_1 P + 2I)\tilde{V} + 2(\tilde{Z} - \tilde{Y})
\]

- \(P = \text{diag}\left(\left(\|\tilde{V}_1\|_2^2 + \mu^2\right)^{-\frac{1}{2}}, \ldots, \left(\|\tilde{V}_{2M}\|_2^2 + \mu^2\right)^{-\frac{1}{2}}\right) \)
- \(Q = \left(\tilde{Z}^T\tilde{Z} + \mu^2 I\right)^{-\frac{1}{2}} \)

Setting derivatives to zeros, solutions:

\[
\tilde{Z} = 2(\tilde{Y} - \tilde{V})(\lambda_2 Q + 2I)^{-1} \quad \tilde{V} = 2(\lambda_1 P + 2I)^{-1}(\tilde{Y} - \tilde{Z})
\]
Proposed Methods

Contaminated Sensors Detection and DOA Estimation

- The sensors, whose ℓ_2 norms of their corresponding rows of \hat{V} are far larger than the others, are regarded as contaminated sensors.
Proposed Methods
Contaminated Sensors Detection and DOA Estimation

- The sensors, whose ℓ_2 norms of their corresponding rows of \widehat{V} are far larger than the others, are regarded as contaminated sensors.

- DOA of signals are estimated via the MUSIC spectrum:

$$P(\theta) = \frac{1}{a^H(\theta)(I - U_sU_s^H)a(\theta)}$$

with singular value decomposition $\widehat{Z} = U_s\Sigma_sV_s$
Overview

Introduction

Proposed Methods

Simulation Results

Conclusion and Outlook
Simulation Results

Setups

- ULA of $M = 10$ sensors
- Distorted sensors: 1st, 4th, 7th, and 8th positions
- $K = 3$ signals with DOAs: \{20°, 50°, 70°\}
- $T = 100$ snapshots
- Regularization parameters: $\lambda_1 = 0.2$, $\lambda_2 = 0.5$, $\mu = 0.1$
Simulation Results

Contaminated Sensors Detection

SNR = -20 dB

SNR = 10 dB

SNR = -10 dB

SNR = 20 dB
Simulation Results

DOA Estimation Performance

![Graph showing DOA estimation performance across different SNR levels for MUSIC with Known Errors, MUSIC without Calibration, LASSO-ADMM, and LRSD-IRLS (Proposed).](image)
Overview

Introduction

Proposed Methods

Simulation Results

Conclusion and Outlook
Conclusion and Outlook

Conclusion:

- Sparsely contaminated array was introduced in DOA estimation.
- We formulated the problem under the framework of LRSD.
- An IRLS technique was derived to solve the resulting problem.
- Numerical results exhibited the effectiveness and superiority in both DOA estimation and contaminated sensors detection.

Outlook:

To guarantee that the proposed method works well, how many sensors at most (with random positions) can be distorted?
Conclusion and Outlook

Conclusion:
- Sparsely contaminated array was introduced in DOA estimation.
- We formulated the problem under the framework of LRSD.
- An IRLS technique was derived to solve the resulting problem.
- Numerical results exhibited the effectiveness and superiority in both DOA estimation and contaminated sensors detection.

Outlook:
- To guarantee that the proposed method works well, how many sensors at most (with random positions) can be distorted?
Thank you for your attention!

Acknowledgment:
The work of Huiping Huang is supported by the Graduate School CE within the Center for Computational Engineering at Technische Universität Darmstadt.