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Signals recorded by distant microphones are contaminated by

non-target speech, environmental noise, and reverberation

Communication with a robot
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• Spatial model represents a structure of spatial covariance matrices (SCMs)

• The SCMs of all sources 𝐆𝑛𝑓 𝑛
are restricted to JD matrices

Jointly-diagonalizable (JD) full-rank spatial model
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• Source model represents a time-frequency structure of source spectrogram

• TF bins of each source are assumed to follow univariate complex Gaussian

distributions with power spectral densities (variances) factorized by NMF

Nonnegative matrix factorization (NMF) source model

𝑠𝑛𝑓𝑡 ∼ 𝒩ℂ 0, 𝜆𝑛𝑓𝑡 = 𝒩ℂ 0, σ𝑘𝑤𝑛𝑘𝑓ℎ𝑛𝑘𝑡

𝑠1𝑓𝑡

𝑠2𝑓𝑡 JD full-rank
spatial model

• Reverberations are represented by the AR model, which is 

suitable especially for representing long reverberations

Autoregressive (AR) reverberation model
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Source separation and dereverberation are required as a preprocess 

of automatic speech recognition, event detection, and so on

• AR-ICA  /  AR-ILRMA  /  AR-MVAE 

 Rank-1 spatial model is not suitable for representing diffuse noise

[Yoshioka+, 2011]          [Kagami+, 2018]                  [Inoue+,2019]

 Computationally heavy because of the full-rank spatial model

• ARMA-FCA / ARMA-twostep-FCA
[Togami+, 2013]                       [Togami, 2020]

use the parameters estimated by AR-ILRMA

to solve the permutation problem(                               )

log 𝑝(𝐗) = σ𝑓,𝑡 log𝒩ℂ(σ𝑙=Δ
Δ+𝐿−1𝐁𝑓𝑙𝐱𝑓,𝑡−𝑙 , σ𝑛σ𝑙′ 𝜆𝑛,𝑓,𝑡−𝑙′𝐆𝑛𝑓𝑙′)
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log 𝑝(𝐗) = σ𝑓,𝑡 log𝒩ℂ(σ𝑙=Δ
Δ+𝐿−1𝐁𝑓𝑙𝐱𝑓,𝑡−𝑙 , σ𝑛 𝜆𝑛𝑓𝑡𝐆𝑛𝑓)
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1. Formulate a generative model of observed multichannel signals

to derive a likelihood function

2. Estimate the parameters by maximizing the log-likelihood 

3. Calculate direct signals by using multichannel Wiener filter

Generation

Inference

• AR-FastMNMF log 𝑝(𝐱) = σ𝑓,𝑡 log𝒩ℂ(σ𝑙=Δ
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Parameter estimation of AR-FastMNMF  =  Parameter estimation of FastMNMF (𝝀, ෩𝐆, 𝐐) + Estimation of the AR coefficients 𝐁
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• FastMNMF
(without AR model)

For each 𝑓, all the 𝐁𝑓𝑙 can be estimated simultaneously so 

that the log-likelihood is maximized.  Alternatively, 𝐁 and 𝐐
can be jointly estimated more efficiently as AR-ILRMA*

*  Ikeshita et al., A unifying framework for blind source separation 

based on a joint diagonalizability constraint,” in EUSIPCO, 2019
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Evaluate the performance using mixtures of two speeches and 

diffuse noise synthesized from REVERB Challenge dataset

☺ AR-FastMNMF outperformed AR-ILRMA 
because full-rank spatial model can deal with diffuse noise

 The difference between AR-FastMNMF and WPE+FastMNMF was small
One possible reason is low estimation accuracy of PSDs due to NMF
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For 𝝀, ෨𝐆, and 𝐐, the same update rules are applicable

If 𝐁 is known, AR-FastMNMF is equivalent to FastMNMF 

on the dereverberated observation 𝐱𝑓𝑡 − σ𝑙𝐁𝑓𝑙𝐱𝑓,𝑡−𝑙


