• Dual-branch Attention-In-Attention Transformer for single-channel speech enhancement

Guochen Yu1,2, Andong Li2, Chengshi Zheng2, Yinuo Guo3, Yutian Wang1,

and Hui Wang1

1State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing, China

2Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China

3Bytedance, Beijing, China
OUTLINE

01 Background

02 Related works

03 Proposed Method

04 Experiments and Analysis

05 Conclusion
Background

- In real acoustic environment, speech quality and intelligibility can be severely degraded by background noise.

- Supervised SE methods based on deep learning are mainly divided into time-frequency domain methods and time domain methods [1].

- The time-frequency domain methods mainly conduct masking and mapping on spectral magnitude or complex spectrum [2, 3].

- The time domain method directly map the clean waveform.

Figure 1: adverse acoustic environment

Background

The recovery of phase is important to improve speech perception quality. [4]

Complex spectrum based SE:

\[Y_{m,f}^{(r)} + iY_{m,f}^{(i)} = \left(S_{m,f}^{(r)} + N_{m,f}^{(r)} \right) + i \left(S_{m,f}^{(i)} + N_{m,f}^{(i)} \right), \]

1) complex ration mask (CRM) [5]

\[CRM = \frac{X_r S_r + X_i S_i}{X_r^2 + X_i^2} + j \frac{X_r S_i - X_i S_r}{X_r^2 + X_i^2} = \tilde{M}_r + j\tilde{M}_i \]

2) estimating real and imaginary components of complex spectrum [6]

01 Introduction

02 Related works

03 Proposed Method

04 Experiments and Analysis

05 Conclusion
Related works

Decoupling-style phase-aware SE methods:
Decouple the original complex spectrum optimization into magnitude and phase estimation, and two sub-network are utilized in a step-wise manner [7].

\[e^{j\theta_X} \]
\[\{X_r, X_i\} \]
\[\text{Decouple Layer} \]
\[X \]
\[e^{j\theta_X} \]
\[\text{ME-Net} \]
\[\tilde{S}_m \]
\[\text{Global Residual Connection} \]
\[\text{CS-Net} \]
\[\{\tilde{S}_r, \tilde{S}_i\} \]

Fig 2: The diagram of CTS-Net [5], which consist of a magnitude estimation network (ME-Net) and a complex spectrum refine network (CS-Net)

Transformer-based SE approaches:
Dual-path transformer has been developed for sequence modelling in speech area [8].

Fig 3: The diagram of dual-path transformer for speech separation

Proposed Method

IACAS

Dual-branch Attention-In-Attention Transformer for single-channel SE

Fig 4: Proposed dual-branch system flowchart

- Two core branches are elaborately designed in parallel:
 - A magnitude masking branch (MMB): filtering out most of the noise in the magnitude domain.
 - A complex refining branch (CRB): compensate for the lost spectral details and implicitly recover phase in the complex domain.
Proposed Method

- MMB path estimates the magnitude mask to coarsely recover the magnitude of the target speech, and the coarsely estimated spectral magnitude is coupled with the noisy phase.

- CRB path receives noisy real and imaginary (RI) components as the input and focuses on the residual fine-grained spectral structures which is lost in MMB.

- Finally, we sum the coarse-denoised complex spectrum in MMB and the fine-grained complex spectral details in CPB together to reconstruct the clean complex spectrum.

- The training procedure can be expressed as:

\[
\begin{align*}
|\tilde{S}_{\text{mmb}}| &= |X_{t,f}| \otimes M_{\text{mmb}}^\text{mmb} \\
\tilde{S}_r^\text{mmb} &= |\tilde{S}_{\text{mmb}}| \otimes \cos(\theta_X) \\
\tilde{S}_i^\text{mmb} &= |\tilde{S}_{\text{mmb}}| \otimes \sin(\theta_X) \\
\tilde{S}_r &= \tilde{S}_r^\text{mmb} + \tilde{S}_r^\text{crb} \\
\tilde{S}_i &= \tilde{S}_i^\text{mmb} + \tilde{S}_i^\text{crb}
\end{align*}
\]
Proposed Method

Attention-in-attention transformer:

consists of four adaptive time-frequency attention transformer-based (ATFA-T) blocks and an adaptive hierarchical attention (AHA) module.

Fig 5: The diagram of ATFA-T blocks

Fig 6: The diagram of AHA module
Proposed Method

The loss function of the proposed dual-branch model:

\[
L^{\text{Mag}} = \left\| \sqrt{|\tilde{S}_r|^2 + |\tilde{S}_i|^2} - \sqrt{|S_r|^2 + |S_i|^2} \right\|_F^2
\]
(6)

\[
L^{\text{RI}} = \left\| \tilde{S}_r - S_r \right\|_F^2 + \left\| \tilde{S}_i - S_i \right\|_F^2
\]
(7)

\[
L_{\text{FULL}} = L^{\text{Mag}} + L^{\text{RI}}
\]
(8)
01 Introduction
02 Related works
03 Proposed Method
04 Experiments and Analysis
05 Conclusion
Experiments and Analysis

Dataset

- Corpus: Voice Bank [9], which includes 28 speakers for training and 2 unseen speakers for testing.

- Training set
 - 11572 utterances from 28 speakers (14 male and 14 female)
 - ten environmental noise from DEMAND database [10], mixed at 0, 5, 10, 15 dB.

- Test set:
 - 824 utterances from 2 unseen speakers

 - SNRs and Noises: five unseen environmental mixed at 2.5, 7.5, 12.5, 17.5 dB.

Experiments and Analysis

Experimental setup:

- Sampling rate: 16kHz

- STFT Window size: 320 samples (20ms), Overlap: 160 samples (10ms), 161-dimensional STFT spectrum

- Power compression [11]: compression coefficient η is set to 0.5 towards magnitude. Input feature:

 \[
 Cat \left(|X|^{0.5} \cos(\theta_X), |X|^{0.5} \sin(\theta_X) \right)
 \]

- $\beta_1=0.9, \ \beta_2=0.999$ in Adam[12] with the learning rate of 5e-4.

- 80 epochs for training, and the batch size is set to 4.

Experiments and Analysis

• Baselines:
 Magnitude domain baselines:
 • MMSE-GAN, MetriGAN, CRGAN, RDL-Net, MetriGAN+
 Time domain baselines:
 • SEGAN, SERGAN, MHSA-SPK, TSTNN, Demucs, SE-Conformer
 Complex domain baselines:
 • DCCRN, TGSA
 Decoupling-style baselines:
 • GAG-NET, PHASEN

• Evaluation metrics:
 • PESQ, STOI, segmental signal-to-noise ratio (SSNR)
 • The MOS prediction of speech distortion (CSIG), background noise (CBAK) and overall effect (COVL).[13]

Experimental Results

Table 1: Comparison with other state-of-the-art methods including time and T-F domain methods.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Year</th>
<th>Feature type</th>
<th>Param.</th>
<th>PESQ</th>
<th>STOI(%)</th>
<th>CSIG</th>
<th>CBAK</th>
<th>COVL</th>
<th>SSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.97</td>
<td>92.1</td>
<td>3.35</td>
<td>2.44</td>
<td>2.63</td>
<td>1.68</td>
</tr>
</tbody>
</table>

SOTA time and T-F Domain approaches

<table>
<thead>
<tr>
<th>Methods</th>
<th>Year</th>
<th>Feature type</th>
<th>Param.</th>
<th>PESQ</th>
<th>STOI(%)</th>
<th>CSIG</th>
<th>CBAK</th>
<th>COVL</th>
<th>SSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEGAN [24]</td>
<td>2017</td>
<td>Waveform</td>
<td>43.2 M</td>
<td>2.16</td>
<td>92.5</td>
<td>3.48</td>
<td>2.94</td>
<td>2.80</td>
<td>7.73</td>
</tr>
<tr>
<td>CRGAN [27]</td>
<td>2020</td>
<td>Magnitude</td>
<td>–</td>
<td>2.92</td>
<td>94.0</td>
<td>4.16</td>
<td>3.24</td>
<td>3.54</td>
<td>–</td>
</tr>
<tr>
<td>DCCRN [8]</td>
<td>2020</td>
<td>RI components</td>
<td>3.7 M</td>
<td>2.68</td>
<td>93.7</td>
<td>3.88</td>
<td>3.18</td>
<td>3.27</td>
<td>8.62</td>
</tr>
<tr>
<td>RDL-Net [28]</td>
<td>2020</td>
<td>Magnitude</td>
<td>3.91 M</td>
<td>3.02</td>
<td>93.8</td>
<td>4.38</td>
<td>3.34</td>
<td>3.72</td>
<td>–</td>
</tr>
<tr>
<td>T-GSA [31]</td>
<td>2020</td>
<td>RI components</td>
<td>–</td>
<td>3.06</td>
<td>93.7</td>
<td>4.18</td>
<td>3.59</td>
<td>3.62</td>
<td>10.78</td>
</tr>
<tr>
<td>TSTNN [10]</td>
<td>2021</td>
<td>Waveform</td>
<td>0.92 M</td>
<td>2.96</td>
<td>95.0</td>
<td>4.17</td>
<td>3.53</td>
<td>3.49</td>
<td>9.70</td>
</tr>
<tr>
<td>SE-Conformer [33]</td>
<td>2021</td>
<td>Waveform</td>
<td>3.13 M</td>
<td>3.13</td>
<td>95.0</td>
<td>4.45</td>
<td>3.55</td>
<td>3.82</td>
<td>–</td>
</tr>
</tbody>
</table>

Proposed approaches

<table>
<thead>
<tr>
<th>Methods</th>
<th>Year</th>
<th>Feature type</th>
<th>Param.</th>
<th>PESQ</th>
<th>STOI(%)</th>
<th>CSIG</th>
<th>CBAK</th>
<th>COVL</th>
<th>SSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMB-AIAT</td>
<td>2021</td>
<td>Magnitude</td>
<td>0.90 M</td>
<td>3.11</td>
<td>94.9</td>
<td>4.45</td>
<td>3.60</td>
<td>3.79</td>
<td>9.74</td>
</tr>
<tr>
<td>CRB-AIAT</td>
<td>2021</td>
<td>RI components</td>
<td>1.17 M</td>
<td>3.15</td>
<td>94.7</td>
<td>4.48</td>
<td>3.54</td>
<td>3.81</td>
<td>8.81</td>
</tr>
<tr>
<td>DB-AIAT</td>
<td>2021</td>
<td>Magnitude+RI</td>
<td>2.81 M</td>
<td>3.31</td>
<td>95.6</td>
<td>4.61</td>
<td>3.75</td>
<td>3.96</td>
<td>10.79</td>
</tr>
</tbody>
</table>

- when only either single-path is adopted, MMB-AIAT and CRB-AIAT achieves competitive performance compared with advanced single-branch baselines.

- By simultaneously adopting two branches in parallel, DB-AIAT consistently surpasses existing SOTA time and T-F domain methods in terms of most metrics.
Experimental Results

Table 2: Ablation study on dual-branch strategy and attention-in-attention transformer structure.

<table>
<thead>
<tr>
<th>Models</th>
<th>ATAB /AFAB</th>
<th>AHA</th>
<th>PESQ</th>
<th>STOI(%)</th>
<th>CSIG</th>
<th>CBAK</th>
<th>COVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprocessed</td>
<td>–</td>
<td>–</td>
<td>1.97</td>
<td>92.1</td>
<td>3.35</td>
<td>2.44</td>
<td>2.63</td>
</tr>
<tr>
<td>Single-Branch approaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMB-ATFAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>3.05</td>
<td>94.6</td>
<td>4.37</td>
<td>3.53</td>
<td>3.71</td>
</tr>
<tr>
<td>MMB-AIAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>3.11</td>
<td>94.9</td>
<td>4.45</td>
<td>3.60</td>
<td>3.79</td>
</tr>
<tr>
<td>CRB-ATFAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>3.07</td>
<td>94.5</td>
<td>4.40</td>
<td>3.52</td>
<td>3.72</td>
</tr>
<tr>
<td>CRB-AIAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>3.15</td>
<td>94.7</td>
<td>4.48</td>
<td>3.54</td>
<td>3.81</td>
</tr>
<tr>
<td>Dual-Branch approaches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB-ATAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>2.82</td>
<td>94.2</td>
<td>4.17</td>
<td>3.29</td>
<td>3.47</td>
</tr>
<tr>
<td>DB-AFAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>2.93</td>
<td>94.4</td>
<td>4.28</td>
<td>3.31</td>
<td>3.63</td>
</tr>
<tr>
<td>DB-ATFAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>3.18</td>
<td>95.0</td>
<td>4.50</td>
<td>3.68</td>
<td>3.86</td>
</tr>
<tr>
<td>DB-AIAT</td>
<td>✓/✓</td>
<td>✓</td>
<td>3.31</td>
<td>95.6</td>
<td>4.61</td>
<td>3.75</td>
<td>3.96</td>
</tr>
</tbody>
</table>

- The proposed attention-in-attention transformer significantly improve speech quality.
- Merging two branches can collaboratively facilitate the spectrum recovery from the complementary perspective.

Fig 7: Visualization of the spectrograms.

(a) Noisy P232_005 (pesq=1.18)
(b) MMB-AIAT (pesq=2.81)
(c) CRB-AIAT (pesq=2.85)
(d) DB-AIAT (pesq=3.19)
01 Introduction
02 Related works
03 Proposed Method
04 Experiments and Analysis
05 Conclusion
We propose a dual-branch transformer-based method to collaboratively recover the clean complex spectrum from the complementary perspective.

A magnitude masking branch (MMB) is designed to coarsely estimate the magnitude spectrum of clean speech, and the residual spectral details are derived in parallel by a complex refining branch (CRB).

We propose an attention-in-attention transformer (AIAT) to capture long-range temporal-frequency dependencies and aggregate global hierarchical contextual information.

Experimental results show that DB-AIAT yields state-of-the-art performance (3.31 PESQ, 95.6% STOI and 10.79dB SSNR) over previous advanced systems with a relatively small model size (2.81M).