Peer Collaborative Learning for Polyphonic Sound Event Detection

Hayato Endo and Hiromitsu Nishizaki
endo@alps-lab.org, hnishi@yamanashi.ac.jp

Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, JAPAN
Polyphonic Sound Event Detection Task

- **Task Definition**: detection of multiple sound event intervals in acoustic data for domestic environments

Goal

Improvement of detection accuracy of sound event intervals in practical environment situations

Label Information on the Task

Three sorts of label types are included in the dataset

<table>
<thead>
<tr>
<th>Label image</th>
<th>Hard label</th>
<th>Soft label</th>
<th>Unlabeled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>class</th>
<th>interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amount of data</th>
<th>small</th>
<th>small</th>
<th>large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty of collection</td>
<td>high</td>
<td>middle</td>
<td>low</td>
</tr>
</tbody>
</table>

Because collecting hard-labeled data is very costly, soft-labeled or unlabeled data should be utilized.

This study proposes a model structure that can utilize soft-labeled and unlabeled data.
Related Work (1/2)

Online Knowledge Distillation [3]

- Considering the output of the ensemble net as a reference, each subnetwork extracts powerful features for classification.

\textbf{Improved performance of each subnetwork} \Rightarrow \textbf{Improved overall performance}

Mean-Teacher model (the baseline model of the DCASE 2019 · 2020 Task4)

- Student model (For training and evaluation): Use the recent weights for classification
- Teacher model (For training only): Use the past to recent weights of the student model

Guiding the student model training, effective use of unlabeled data
Summary of Our Research

■ **Goal** of our research
 - Improvement of accuracy of sound event detection on the DCASE Task 4

■ **Proposed approach**
 - Use Peer Collaborative Learning (PCL)\[[4]\], an integration and development of online knowledge distillation and mean-teacher approaches
 - Propose an effective combination of PCL and acoustic data augmentation

※ F1-score was used as evaluation measure

RESULT: Baseline (31.1%※) ➤ Proposed (44.2%※)

【Proposed】PCL with Data Augmentation

Pre-processing

- **Input data:** X
 - Hard-labeled data
 - Soft-labeled data
 - Unlabeled

Data augmentation (DA)

1. X (w/o DA)
2. $X + $ mixup
3. $X + $ Gaussian noise
4. $X + $ frequency mask
5. $X + (3+4)$

Peer Collaborative Learning (PCL)

- **Student model**
 - lower layer
 - upper layers
 - Subnetwork 1
 - Subnetwork 5
 - Ensemble net
 - Output

- **Teacher model**
 - lower layer
 - upper layers
 - Subnetwork 5
 - Output

Update weight parameters using the exponential moving average

- L_{BCE}: Classification loss
- L_{MSE}: Consistency loss
- BCE: Binary cross entropy
- MSE: Mean squared error

Hard label
- Soft label

Soft label
- Hard label
- Unlabeled

Data augmentation (DA)

- X_1
- X_2
- X_3
- X_4
- X_5

- Hard label
- Soft label
- Unlabeled

- L_{BCE}
- L_{MSE}

Input data: X
Data Pre-Processing

Pre-processing

Input data: X

- Hard-labeled data
- Soft-labeled data
- Unlabeled

Data augmentation (DA)

1. X (w/o DA)
2. $X +$ mixup
3. $X +$ Gaussian noise
4. $X +$ frequency mask
5. $X + (3+4)$

Student model
- lower layer
- upper layers
- Subnetwork 1
- Subnetwork 5
- Ensemble net

Teacher model
- lower layer
- upper layers
- Subnetwork 1
- Subnetwork 5

Peer Collaborative Learning (PCL)

- Hard label
- Soft label
- Hard label
- Soft label
- Unlabeled

Update weight parameters using the exponential moving average

X_1, X_2, X_3, X_4, X_5

Loss functions:
- L_{BCE}: Classification loss
- L_{MSE}: Consistency loss
- BCE: Binary cross entropy
- MSE: Mean squared error
Peer Collaborative Learning

Pre-processing

Input data: X

- Hard-labeled data
- Soft-labeled data
- Unlabeled

Data augmentation (DA)

1. X (w/o DA)
2. X + mixup
3. X + Gaussian noise
4. X + frequency mask
5. X + (3+4)

Peer Collaborative Learning (PCL)

Student model

lower layer

shared layers

Subnetwork 1

...

Subnetwork 5

upper layers

output

Ensemble net

output

Update weight parameters using the exponential moving average

Hard label
Soft label

Hard label
Soft label
Unlabeled

Teacher model

shared layers

upper layers

Subnetwork 5

output

Subnetwork 1

output

Hard label
Soft label

L_{BCE}: Classification loss
L_{MSE}: Consistency loss
BCE: Binary cross entropy
MSE: Mean squared error

Input data: X

- X_1
- X_2
- X_3
- X_4
- X_5
PCL Model Details

1. \(X\)
2. \(X + \text{Mix up}\)
3. \(X + \text{Gaussian noise}\)
4. \(X + \text{Frequency mask}\)
5. \(X + 3 \& 4\)

Augment for subnets

- Basic augment
 - No change
 - Filter
 - Time shift
 - Time mask
- \(X_1\)
- \(X_2\)
- \(X_3\)
- \(X_4\)
- \(X_5\)

PCL Model Formulation

\[L = L_{BCE}^{n,w} + L_{BCE}^{n,stu} + L_{BCE}^{n,te} + L_{MSE}^{n,stu} + L_{MSE}^{n,te} + L_{MSE}^{en,stu} + L_{MSE}^{en,te}\]

- \(n\): Subnet Number
- \(m\): Subnet number, excluding \(n\)
- \(L_{BCE}^{n,w}\): BCE for each subnet's output
- \(L_{BCE}^{n,stu}\): BCE for ensemble output
- \(L_{MSE}^{n,stu}\): MSE of each subnet output of the student model and each subnet output of the teacher model except \(n\)
- \(L_{MSE}^{en,stu}\): MSE with each subnet output and ensemble output

Input: \(X\)

Student Model

- Low-level layer (Share layers)
- High-level layers

Teacher Model

- Shared layers
- High-level layers

Augment for subnets

- No change
- Filter
- Time shift
- Time mask

Augment for subnets

- No change
- Filter
- Time shift
- Time mask

Basic augment

- No change
- Filter
- Time shift
- Time mask

PCL Model Formulation

\[L = L_{BCE}^{n,w} + L_{BCE}^{n,stu} + L_{BCE}^{n,te} + L_{MSE}^{n,stu} + L_{MSE}^{n,te} + L_{MSE}^{en,stu} + L_{MSE}^{en,te}\]

- \(n\): Subnet Number
- \(m\): Subnet number, excluding \(n\)
- \(L_{BCE}^{n,w}\): BCE for each subnet's output
- \(L_{BCE}^{n,stu}\): BCE for ensemble output
- \(L_{MSE}^{n,stu}\): MSE of each subnet output of the student model and each subnet output of the teacher model except \(n\)
- \(L_{MSE}^{en,stu}\): MSE with each subnet output and ensemble output

Wap

- Weighted average pooling

BCE

- Binary Cross Entropy

MSE

- Mean Squared Error
Experimental Setup

- **Dataset**
 - DCASE 2019 Task4 [1]
 - Sounds expected to occur in home environment (1 file = 10 seconds duration)

<table>
<thead>
<tr>
<th></th>
<th>Label type</th>
<th># of data [/file]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Hard label</td>
<td>2,045</td>
<td>Known event intervals</td>
</tr>
<tr>
<td></td>
<td>Soft label</td>
<td>1,578</td>
<td>Unknown event intervals</td>
</tr>
<tr>
<td></td>
<td>Unlabeled</td>
<td>14,412</td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td>Hard label</td>
<td>1,168/692</td>
<td>Known event intervals</td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Num. of event classes: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm/bell/ringing</td>
</tr>
<tr>
<td>Blender</td>
</tr>
<tr>
<td>Cat</td>
</tr>
<tr>
<td>Dishes</td>
</tr>
<tr>
<td>Dog</td>
</tr>
</tbody>
</table>

- **Evaluation measure**
 - F1-score [%] based on the interval of sound event occurrence
 - The student model is used for evaluation

[Diagram of sound event classification with Dog label and time intervals 2.20~4.10 [s]]
Experimental Setup

- **Dataset**
 - DCASE 2019 Task4 [1]
 - Sounds expected to occur in home environment (1 file = 10 seconds duration)

<table>
<thead>
<tr>
<th></th>
<th>Label type</th>
<th># of data [/file]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard</td>
<td></td>
<td>2,045</td>
</tr>
<tr>
<td>Soft</td>
<td></td>
<td>1,578</td>
</tr>
<tr>
<td>Unlabeled</td>
<td></td>
<td>14,412</td>
</tr>
<tr>
<td>Validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard</td>
<td></td>
<td>1,168</td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard</td>
<td></td>
<td>692</td>
</tr>
</tbody>
</table>

- **Evaluation measure**
 - F1-score [%] based on the interval of sound event occurrence
 - The student model is used for evaluation

<table>
<thead>
<tr>
<th>Num. of event classes: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm/bell/ringing</td>
</tr>
<tr>
<td>Blender</td>
</tr>
<tr>
<td>Cat</td>
</tr>
<tr>
<td>Dishes</td>
</tr>
<tr>
<td>Dog</td>
</tr>
</tbody>
</table>

2.20~4.10 [s]
Four Competitive Approaches

<table>
<thead>
<tr>
<th>Model image</th>
<th>Baseline (mean-teacher)</th>
<th>Online KD(^{[3]}) w/ DA</th>
<th>PCL w/ DA (proposed)</th>
<th>PCL w/o DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student model</td>
<td>single network → output</td>
<td>single model → output</td>
<td>Student model → subnetwork 1 → output</td>
<td>Student model → subnetwork 1 → output</td>
</tr>
<tr>
<td>Teacher model</td>
<td>single network → output</td>
<td>single model → output</td>
<td>Teacher model → subnetwork 5 → output</td>
<td>Teacher model → subnetwork 5 → output</td>
</tr>
</tbody>
</table>

Online KD w/ DA: Online knowledge distillation with data augmentation

PCL w/ DA: Peer collaborative learning with data augmentation

PCL w/o DA: Peer collaborative learning *without* data augmentation
Evaluation Results (F1-score [%])

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Online KD w/ DA</th>
<th>PCL w/ DA</th>
<th>PCL w/o DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>25.9</td>
<td>43.1</td>
<td>43.8</td>
<td>41.7</td>
</tr>
<tr>
<td>Evaluation</td>
<td>31.1</td>
<td>43.4</td>
<td>44.2</td>
<td>42.4</td>
</tr>
</tbody>
</table>

- **Experimental findings**
 1. PCL Online KD > Baseline
 2. PCL w/ DA Online KD w/ DA > PCL w/o DA

- Confirmation of the effectiveness of the PCL model, which evolved from the online knowledge distillation and mean-teacher methods
- It is valid to design sub-networks based on the data augmentation process
Evaluation Results (F1-score [%])

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Online KD w/ DA</th>
<th>PCL w/ DA</th>
<th>PCL w/o DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>25.9</td>
<td>43.1</td>
<td>43.8</td>
<td>41.7</td>
</tr>
<tr>
<td>Evaluation</td>
<td>31.1</td>
<td>43.4</td>
<td>44.2</td>
<td>42.4</td>
</tr>
</tbody>
</table>

Experimental findings

1. **PCL Online KD** > Baseline
2. **PCL w/ DA Online KD w/ DA** > **PCL w/o DA**

- Confirmation of the effectiveness of the PCL model, which evolved from the online knowledge distillation and mean-teacher methods
- It is valid to design sub-networks based on the data augmentation process
Conclusions

- **Motivation (Goal)**
 - Improvement of accuracy of polyphonic sound event detection on the DCASE Task4 task

- **Proposed approach**
 - **Peer collaborative learning** model, which evolved from the online knowledge distillation and mean-teacher methods with **audio data augmentation**

- **Experimental results (F1-score)**
 - Baseline (mean-teacher) 31.1% →⇒ PCL with data augmentation 44.2%

- **Future work**
 - We will implement and experiment with new knowledge distillation methods, such as collaborating with other knowledge distillation methods