A Neural Network Alternative to Non-Negative Audio Models

PARIS SMARAGDIS#*
SHRIKANT VENKATARAMANI#

#UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
*ADOBE RESEARCH

ICASSP 2017
Introduction

- **Supervised Single-channel Source Separation**
 - Given a mixture of N sources
 \[x(t) = \sum_{i} w_i s_i(t), \text{ where } w_i \in \mathbb{R} \text{ for } i = \{1, \ldots, N\} \]
 - Separate individual sources
 - Training data in the form of alternate unmixed recordings of the source.

- **Non-negative Matrix Factorization (NMF)**

- **Objective:** Develop a neural network alternative to NMF
Outline

- Non-negative Matrix Factorization (NMF)
- Non-negative Auto-encoder (NAE) equivalent to NMF
- Supervised source separation using NAE models
- Results
NMF

- NMF for matrices

\[X = WH \quad \text{where} \quad X \in \mathbb{R}_{\geq 0}^{m \times n}, \ W \in \mathbb{R}_{\geq 0}^{m \times r}, \ H \in \mathbb{R}_{\geq 0}^{r \times n}, \]

- NMF is posed as a minimization problem

\[
\begin{align*}
&\text{minimize} \\
&\quad D(X, WH) \\
&\text{subject to} \\
&\quad W \geq 0, \ H \geq 0.
\end{align*}
\]

where \(\geq 0 \) implies element-wise non-negativity

- Commonly used Cost functions
NMF: Piano example

- No cross-cancellations
- Part based decomposition
- Meaningful basis vectors.
- Can be used as a model for supervised source separation.

\[D = KL(X \parallel WH) \]
Towards an NMF neural network

- Autoencoder: Reconstructs the input at the output
 - Encoder: Input to Code
 - Decoder: Code to approximation of input

\[X = WH \quad \text{s.t.} \quad H \geq 0 \]

\[\hat{X} = WH \quad \text{s.t.} \quad W \geq 0 \]
Towards an NMF neural network

- **Autoencoder**: Reconstructs the input at the output
 - **Encoder**: Input to Code
 - **Decoder**: Code to approximation of input

- $g(x) = \max(x, 0)$ or $\ln(1 + \exp(x))$ or $|x|$ mapping to the space of positive real nos.
Piano Example

Without sparsity

\[D = K L(X \parallel g(WH)) \]

With Sparsity

\[D = K L(X \parallel g(WH)) + \| H \|_1 \]
Why is this a good idea?

- Allows for several extensions over regular NMF

Recurrent NAE-NMF

Multi-layer NAE-NMF
Supervised source separation

- Learn representative bases for all the sources.
 - Autoencoder training on unmixed training examples gives representative matrices W_s and W_n.

- The spectrogram of the mixture is the sum of spectrograms of the sources.

$$X_m = S + N = g(W_s H_s) + g(W_n H_n)$$

Thus,

$$X_m^T = g(H_s^T W_s^T) + g(H_n^T W_n^T)$$

An output neural network with inputs: W_s^T, W_n^T and output: X_m^T
Supervised source separation

- Solve the minimization problem for H_s and H_n
 \[
 \min_{H_s, H_n} KL(X_m \mid\mid g(W_s H_s) + g(W_n H_n))
 \]
 Solved by training the output neural network

- Reconstruct the sources
 \[
 \hat{s}_i[n] = \text{STFT}^{-1}\left(\frac{g(W_i H_i)}{\sum_{i \in \{s, n\}} g(W_i H_i)} \otimes X_m \otimes e^{j \Phi_m} \right) \quad \text{for } i \in \{s, n\}
 \]
 where Φ_m represents the phase of the mixture
 STFT^{-1} represents the overlap and add STFT operation
Results

NMF vs shallow- NAE
Rank = 20

NMF vs multilayer NAE
Rank = 20
Results

NMF vs shallow-NAE
Rank = 100

NMF vs multilayer NAE
Rank = 100
Conclusion

❑ Non-negative Auto-encoder (NAE) audio models equivalent to NMF
 ❑ Easily generalizable

❑ Separation Performance
 ❑ Shallow NAE models equivalent to NMF
 ❑ Multilayer NAE models outperform NMF by ~ 1.5 dB (SDR)

❑ Future work
 ❑ Alternate neural net architectures for NAE
 ❑ Towards an end-to-end neural net for source separation.
THANK YOU
Demo

<table>
<thead>
<tr>
<th></th>
<th>Ground truth (SDR = 6.05 dB)</th>
<th>NMF (SDR = 5.4 dB)</th>
<th>Two layer NN (SDR = 7.1 dB)</th>
<th>Four layer NN (SDR = 7.1 dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Male)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Female)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>