A Neural Network Alternative to Non-Negative Audio Models

PARIS SMARAGDIS^{#*} SHRIKANT VENKATARAMANI[#]

#UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN *ADOBE RESEARCH

ICASSP 2017

Introduction

Supervised Single-channel Source Separation

Given a mixture of N sources

 $x(t) = \sum w_i s_i(t)$, where $w_i \in \mathbb{R}$ for $i = \{1, \dots, N\}$

- Separate individual sources
- Training data in the form of alternate unmixed recordings of the source.
- Non-negative Matrix Factorization (NMF)
- Objective: Develop a neural network alternative to NMF

Outline

Non-negative Matrix Factorization (NMF)

□ Non-negative Auto-encoder (NAE) equivalent to NMF

Supervised source separation using NAE models

Results

NMF

NMF for matrices

 $\mathbf{X} = \mathbf{W}\mathbf{H}$ $\mathbf{X} \in \mathbb{R}_{>0}^{m \times n}, \ \mathbf{W} \in \mathbb{R}_{>0}^{m \times r}, \ \mathbf{H} \in \mathbb{R}_{>0}^{r \times n},$

NMF is posed as a minimization problem

 $\begin{array}{ll} \underset{\mathbf{W},\mathbf{H}}{\text{minimize}} & D(\mathbf{X},\mathbf{WH}) \\ \text{subject to} & \mathbf{W} \geq 0, \mathbf{H} \geq 0. \end{array}$

where ≥ 0 implies element-wise non-negativity

Commonly used Cost functions

NMF: Piano example

No cross-cancellations

Part based decomposition

Meaningful basis vectors.

Can be used as a model for supervised source separation.

Towards an NMF neural network

- Autoencoder: Reconstructs the input at the output
 - Encoder: Input to Code
 - Decoder: Code to approximation of input

Towards an NMF neural network

- Autoencoder: Reconstructs the input at the output
 - Encoder: Input to Code
 - Decoder: Code to approximation of input

g(x) = max(x,0) or ln(1 + exp(x)) or |x| mapping to the space of positive real nos.

Without sparsity

With Sparsity

 $\mathbf{D} = KL(\mathbf{X} \mid\mid g(\mathbf{WH}))$

 $\mathbf{D} = KL(\mathbf{X} \mid\mid g(\mathbf{W}\mathbf{H})) + ||\mathbf{H}||_1$

Supervised source separation

- Learn representative bases for all the sources.
 - Autoencoder training on unmixed training examples gives representative matrices Ws and Wn.
- The spectrogram of the mixture is the sum of spectrograms of the sources.

$$\mathbf{X}_m = \mathbf{S} + \mathbf{N} = g(\mathbf{W}_s \mathbf{H}_s) + g(\mathbf{W}_n \mathbf{H}_n)$$

Thus,

 $\mathbf{X}_m^T = g(\mathbf{H}_s^T \mathbf{W}_s^T) + g(\mathbf{H}_n^T \mathbf{W}_n^T)$

An output neural network with inputs: $\mathbf{W}_s^T, \mathbf{W}_n^T$ and output: \mathbf{X}_m^T

Supervised source separation

Solve the minimization problem for Hs and Hn

 $\underset{\mathbf{H}_s,\mathbf{H}_n}{\text{minimize}} \quad KL(\mathbf{X}_m \mid\mid g(\mathbf{W}_s\mathbf{H}_s) + g(\mathbf{W}_n\mathbf{H}_n))$

Solved by training the output neural network

Reconstruct the sources

$$\hat{s}_i[n] = \mathrm{STFT}^{-1} \left(\frac{g(\mathbf{W}_i \mathbf{H}_i)}{\sum_{i \in \{s,n\}} g(\mathbf{W}_i \mathbf{H}_i)} \odot \mathbf{X}_m \odot e_m^{j \cdot \mathbf{\Phi}_m} \right) \text{ for } i \in \{s,n\}$$

where Φ_m represents the phase of the mixture STFT⁻¹ represents the overlap and add STFT operation

Results

NMF vs shallow- NAE Rank = 20

NMF vs multilayer NAE Rank = 20

Results

NMF vs shallow- NAE Rank = 100

NMF vs multilayer NAE Rank = 100

Conclusion

Non-negative Auto-encoder (NAE) audio models equivalent to NMF

Easily generalizable

Separation Performance

- Shallow NAE models equivalent to NMF
- Multilayer NAE models outperform NMF by ~ 1.5 dB (SDR)

Future work

- Alternate neural net architectures for NAE
- Towards an end-to-end neural net for source separation.

THANK YOU

Demo

	Ground truth	NMF (SDR = 6.05 dB)	Two layer NN (SDR = 5.4 dB)	Four layer NN (SDR = 7.1 dB)
Source 1 (Male)				
Source 2 (Female)				