

DEEP MULTIMODAL LEARNING FOR EMOTION RECOGNITION IN SPOKEN LANGUAGE Yue Gu, Shuhong Chen, Ivan Marsic **Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ, USA**

Abstract:

We present a novel deep multimodal framework to predict human emotions based on sentence-level spoken language. Our architecture has two distinctive characteristics. First, it extracts the high-level features from both text and audio via a hybrid deep multimodal structure, which considers the spatial information from text, temporal information from audio, and high-level associations from low-level handcrafted features. Second, we fuse all features by using a threelayer deep neural network to learn the correlations across modalities and train the feature extraction and fusion modules together, allowing optimal global fine-tuning of the entire structure. We evaluated the proposed framework on the IEMOCAP dataset. Our result shows promising performance, achieving 60.4% in weighted accuracy for five emotion categories.

Challenges:

- Lack of effective emotional modality-specific features and shared representations.
- ignoring the high-level associations across different modality and cannot guarantee global tuning of the parameters.

Contributions:

- A hybrid deep framework to predict the emotions from spoken language, which consists of ConvNets, CNN-LSTM, and DNN, to extract spatial and temporal associations from the raw text-audio data and low-level acoustic features.
- A four-layer deep neural network to fuse the features and classify the emotions, which allows global fine-tuning of the entire network.
- A detailed comparison with previous work and modality-specific models. 3.

Data Preprocessing:

- Used text as input and extracted the part-of-speech tags (POS) for each sentence using Natural Language Toolkit (NLTK) [1].
- Extracted the Mel-frequency spectral coefficients (MFSCs) from raw audio signals as audio input and extracted the low-level pitch and vocal related features using OpenSmile software [2].
- Evaluated on IEMOCAP including *anger, sad, neutral, frustration*, and *happy (happy+excited).*

Figure 2. Feature extraction structure for MFSC maps

. Text: word2vec + ConvNets with 2, 3, 4, and 5 as the widths.

2. POS: encoded the POS into a 10-dimensional vector and used the same ConvNets structure as the word branch to extract the POS features.

4. LLDs: a three-layer deep neural network of one input layer with two hidden layers to extract the high-level associations from the low-level features.

5) I	Fully- Connected Layer (4096)	Dense Layer (1024)	LSTM (1024)
	Layer5	Layer6	Layer7

- 3. MFSC: CNN-LSTM with seven layers to extract spatial-temporal associations.

Implementation:

- 80-20 training-testing split with speaker independence.
- 2. Rectified linear unit (ReLU) as the activation function.
- 3. Implemented the model with Keras and Tensorflow backend.
- value from categorical cross-entropy loss function.

Results:

- to better performance on *Hap*, *Sad*, *Neu*, and *Fru*.
- weighted accuracy.
- 4. Fine-tuning strategy increases weighted accuracy by 2.7%.
- achieves the best performance, improving accuracy by up to 8%.

Table 1. Accuracy comparison of different feature con
(percentage)

(percentage)						(percentage)								
Approach	Ang	Hap	Sad	Neu	Fru	Approach	Ang	Hap	Sad	Neu	Fru			
CNN _{word}	42.9	54.0	50.2	39.7	49.2	BoW+SVM	40.6	45.0	42.2	31.7	44.2			
CNN _{pos}	10.3	33.2	30.3	12.9	39.5	CNN _{word} [16]	42.9	54.2	50.3	39.7	49.2			
CNN_LSTM_{mfsc}	51.5	50.6	52.3	43.2	49.2	$LHAF_{wo}+SVM[1]$	41.2	36.6	38.3	39.2	41.5			
DNN _{lhaf}	54.3	44.1	40.4	39.8	41.7	$LHAF_{w}+SVM[1]$	40.2	37.1	40.2	40.1	41.8			
$CNN_{word} + CNN_{pos}$	47.5	54.1	53.3	41.5	49.3	CNN _{mel} [7]	39.7	41.2	43.5	39.1	41.4			
•						$CNN_{word} + LHAF_{w} + MKL[2]$	50.3	52.5	53.2	49.2	52.2			
CNN_{word} + CNN_LSTM_{mfsc}	54.6	59.2	57.2	52.1	54.3	$CNN_{word} + CNN_{mfsc}$ [11]	50.1	52.3	56.3	51.2	50.4			
$CNN_{word} + DNN_{lhaf}$	55.3	52.5	54.2	51.2	52.2	$CNN_{word} + CNN_{mfsc} + SVM$	51.2	50.8	55.3	51.7	51.4			
CNN_{pos} + CNN_LSTM_{mfsc}	46.1	40.3	41.3	34.2	40.4	Our Method	57.2	65.8	60.2	56.3	61.6			
CNN _{pos} +DNN _{lhaf}	37.2	42.8	35.3	27.7	35.4	LHAF _{wo} : Low-level handcrafted acoustic features without feature								
$CNN_LSTM_{mfsc}+DNN_{lhaf}$	53.7	51.3	51.1	41.3	49.5	selection. $LHAF_w$: Low-level handcraft acoustic features with								
Both_text+CNN_LSTM _{mfsc}	55.7	61.3	57.4	52.6	57.5	feature selection. CNN _{mel} : Using ConvNet as feature extractor and								
Both_text+DNN _{lhaf}	55.9	60.2	54.1	50.3	54.3	mel-spectrogram as input data. CNN_{mfsc} : Using ConvNet as feature extractor and MFSC as input data. <i>MKL</i> : Using multiple kernel								
CNN _{word} +Both_audio	56.1	63.2	60.1	55.4	60.4									
CNN _{pos} +Both_audio	47.2	42.3	40.1	36.2	40.5	learning as fusion strategy.								
Our Method_Separate	55.3	61.4	57.2	52.3	58.1	Reference:								
Our Method Together	57.2	65.8	60.2	56.3	61.6									
CNN II' ConNet	6 4		[1] Divid Chargen WNUTW, the vertexed level to all it W											

*CNN*_{word}: Using ConvNet as feature extractor and text as input; CNN_{pos}: Using ConvNet as feature extractor and part-of-speech tags as input data; CNN_LSTM_{mfsc} : Using CNN-LSTM as feature extractor and MFSC energy maps as input data; DNN_{lhaf}: Using DNN as feature extractor and low-level handcraft features as input data; *Both_text*: Including both *CNN_{word}* and *CNN_{pos}*; *Both_audio*: Including both *CNN_LSTM_{mfsc}* and *DNN_{lhaf}*.

Supervised by: Ivan Marsic Multimedia and Image Processing Lab

4. Initialized the learning rate at 0.01 and use Adam optimizer to minimize the

1. The spatial-temporal high-level acoustic features extracted from the CNN-LSTM lead

2. The DNN_{lhaf} achieves the best result on Ang category in all unimodal structures.

3. Combining all the features from four branches achieves the best result, with 60.4%

5. Compared with previous approaches, the proposed hybrid deep multimodal structure

 Table 2. Comparision of previous emotion recognition structures
(nercentage)

||| Bird, Steven. "NLTK: the natural language toolkit." In Proceedings of the COLING/ACL on Interactive presentation sessions, pp. 69-72. Association for Computational Linguistics,

[2] Eyben, Florian, Martin Wöllmer, and Björn Schuller. "Opensmile: the munich versatile and fast open-source audio feature extractor." In Proceedings of the 18th ACM international conference on Multimedia, pp. 1459-1462. ACM, 2010.