DEEP MULTIMODAL LEARNING FOR EMOTION RECOGNITION IN SPOKEN LANGUAGE N
Yue Gu, Shuhong Chen, lvan Marsic mJTGERS

School of Engineering

Department of Electrical and Computer Engineering,

Supervised by: lvan Marsic

- - - Multimedia and Image Processing Lab
Rutgers University, New Brunswick, NJ, USA g g
Abstract: System Structure: Implementation:
We present a novel deep multimodal framework to predict human emotions —: —:-:-—:--— . : ————— — — —,; 1. 80-20 training-testing split with speaker independence.
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characteristics. First, it extracts the high-level features from both text and audio | LTRSS | | 3. Implemented the model with Keras and Tensorflow backend.
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via a hybrid deep multimodal structure, which considers the spatial information | Text Branch | ' w, - . | concatenatea | 4. Initialized the learning rate at 0.01 and use Adam optimizer to minimize the
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from text, temporal information from audio, and high-level associations from - LL e |(: " : convites | | value from categorical cross-entropy loss function.
low-level handcrafted features. Second, we fuse all features by using a three- || St | TT 300N, 1024 | Results:
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ayer deep neural network to learn the correlations across modalities and train | Data 18 orvofspeech | oo oo o= o | | | 1. The spatial-temporal high-level acoustic features extracted from the CNN-LSTM lead
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the feature extraction and fusion modules together, allowing optimal global | 1 3 6 o . | to better performance on Hap, Sad, Neu, and Fru.
fine-tuning of the entire structure. We evaluated the proposed framework on the | [ ]| B : ConvNet \:\’ | 2. The DNNyyq; achieves the best result on Ang category in all unimodal structures.
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IEMOCAP dataset. Our result shows promising performance, achieving 60.4% - T S w0, .= ||| 3. Combining all the features from four branches achieves the best result, with 60.4%
in weighted accuracy for five emotion categories. | | 31 weighted accuracy.
Challenges: | ~ " [ L 4 Fine-tuning strategy increases weighted accuracy by 2.7%.
: : : : : - | CNN | , . . .
1.  Lack of effective emotional modality-specific features and shared - A"d'ol?ramh + | Hidden Hidden-2Y®" : 5. Compared with previous approaches, the proposed hybrid deep multimodal structure
. . LSTM Layerl Layer2 . . . 0
representations. . | | | sentance- ™ Audio Signa il = | et | achieves the best performance, improving accuracy by up to 8%.
2. 1gnoring the high-level associations across ditferent modality and cannot | tevel Audie | g Deep Neural Networks Laver
. | Clips mp  Handcraft I Table 1. Accuracy comparison of different feature combinations Table 2. Comparision of previous emotion recognition structures
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Contributions: | OpergMM .| Feature Vector : | TCNNyora 429 540 502 39.7 492  BoW+SVM 40.6 450 422 317 442
1. A hybnid deep framework to predict the emotions from spoken language, - [ Software ]| (6382) | | CNNpos 103 332 303 129 395 Eﬂ;—rordg%m zﬁg ggé ;gg gg; jﬁ’g
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which consists of ConvNets, CNN-LSTM, and DNN, to extract spatial and Lee—- RN e e T DNN ' 543 441 404 1398 417 LHAR,+SVM[1] 402 371 402 401 418
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2. A four-layer deep neural network to fuse the features and classity the | MFSC B(3x3x32) || (3x3x64) ||(3x3%128)|[(3x3%256) || Connected 1 LSTM CNNyostCNN_LSTMyprse | 461 403 413 342 404  Our Method | 72 658 602 563 616
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emotions, which allows global fine-tuning of the entire network. Map || Max-pool || Max-pool || Max-pool || Max-pool Layer Y (1024) CNNpos *DNNina 572 428 393 277 394 LHAE,,: Low-level handcrafted acoustic features without feature
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sentence using Natural Language Toolkit (NLTK) [1]. 1. Text: word2vec + ConvNets with 2, 3, 4, and 5 as the widths. Our Method Together | 572 658 602 3563 o1 Reference:
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related features using OpenSmile software [2]. . MFSC: CNN-LSTM with seven layers to extract spatial-temporal associations. extractor and MFSC energy maps as input data; DNNyqy: Using -3¢
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