

NEURAL ADAPTIVE IMAGE DENOISER

Abstract

We propose a novel neural network-based adaptive image denoiser, dubbased as Neural AIDE. Unlike other neural network-based denoisers, which typically apply supervised training to learn a mapping from a noisy patch to a clean patch, we formulate to train a neural network to learn context- based affine mappings that get applied to each noisy pixel. Our formulation enables using SURE (Stein's Unbiased Risk Estimator)-like estimated losses of those mappings as empirical risks to minimize. In results, we can combine both supervised training of the network parameters from a separate dataset and *adaptive* fine-tuning of them using the given noisy image subject to denoising. Our algorithm with a plain fully connected architecture is shown to attain a competitive denoising performance on benchmark datasets compared to the strong baselines. Furthermore, Neural AIDE can robustly correct the mismatched noise level in the supervised learning via fine-tuning, of which adaptivity is absent in other neural network-based denoisers.

Introduction

• Grayscale image denoising

- Various denoising methods have been proposed
 - EX) BM3D, WNNM, EPLL, MLP and DnCNN
- Especially, CNN based image denoising methods recently surpassed the previous state-of-the-arts

• Drawback of CNN based image denoising methods

- Solely based on offline batch training
- Lacks adaptivity to the given noisy image

Problem setting

- $-x^{n \times n}$: the clean grayscale image, and each pixel $x_i \in$ [0,255]
- Each pixel is corrupted by **an independent additive noise** to result in a noisy pixel Z_i , *i.e.*, $Z_i = x_i + N_i$

$$- \mathbb{E}(N_i) = 0, \mathbb{E}(N_i^2) = \sigma^2$$

Estimated loss function for affine denoiser

Affine denoiser

• Estimated loss function for single letter setting

 $\mathcal{L}(Z)$

is an ur

For each loc

 $\mathcal{L}(Z_i, (a(\mathbf{Z}^{i})),$

Neural AIDE $\hat{X}_i(Z^{n\times n})$

- Two steps for training Neural AIDE

 (\tilde{x}, \tilde{Z}) : Collected abundant clean and noisy image pairs 2. Adaptive training with given noisy image: minimize

 $\hat{X}_{i, ext{Neural}}$

Sungmin Cha and Taesup Moon

Department of Electrical and Computer Engineering

Sungkyunkwan University (SKKU)

 $\widehat{X}_i(Z^{n \times n}) = a(Z^{\setminus i}) \cdot Z_i + b(Z^{\setminus i})$

Suppose Z = x + N with $\mathbb{E}(N) = 0$ and $\mathbb{E}(N^2) = \sigma^2$, and consider a mapping of form $\hat{X}(Z) = aZ + b$. Then,

$$Z, (a, b); \sigma^{2}) = (Z - (aZ + b))^{2} + 2a\sigma^{2}$$

$$nbiased \ estimate \ of \ \mathbb{E} \left(x - \hat{X}(Z) \right)^{2} + \sigma^{2}$$

$$cation \ i \ given \ Z \setminus i$$

cation *i*, given
$$Z^{i}$$
,

$$b(Z^{i});\sigma^{2} = (Z_{i} - (a(Z^{i}) + b(Z^{i})))^{2} + 2a\sigma^{2}$$

Different from vanilla

supervised training

is an unbiased estimate of $\mathbb{E}_{Z_i}\left((x_i - \hat{X}_i (Z^{n \times n}))^2 | Z^{\setminus i}\right) + \sigma^2$

Neural AIDE

$$\mathbf{X}^{(n)} = \mathbf{a}(\mathbf{w}, \mathbf{C}_{k \times k}^{\setminus i}) \cdot Z_i + \mathbf{b}(\mathbf{w}, \mathbf{C}_{k \times k}^{\setminus i})$$

I. Supervised training: minimize

$$(\tilde{x}_i - (\mathbf{a}(\mathbf{w}, \tilde{\mathbf{C}}_{k \times k}^{\setminus i}) \cdot \tilde{Z}_i + \mathbf{b}(\mathbf{w}, \tilde{\mathbf{C}}_{k \times k}^{\setminus i}))^2$$

$$\mathbf{L}\Big(Z_i, (\mathbf{a}(\tilde{\mathbf{w}}, \mathbf{C}_{k \times k}^{\setminus i}), \mathbf{b}(\tilde{\mathbf{w}}, \mathbf{C}_{k \times k}^{\setminus i})); \sigma^2\Big)$$

- Z : Given noisy image

• The reconstruction at location *i* by Neural AIDE

$$\mathbf{AIDE}(Z^{n \times n}) = \mathbf{a}(\mathbf{w}^*, \mathbf{C}_{k \times k}^{\setminus i}) \cdot Z_i + \mathbf{b}(\mathbf{w}^*, \mathbf{C}_{k \times k}^{\setminus i})$$

Experimental results

• Experimental settings

- Training data : 2000 training images
- Test data : the 11 standard benchmark images, the 68 Berkeley test images
- Context size = |7x|7 |
- Model : 9 FC layer with 512 nodes
- Keras with tensorflow backend

The II standard benchmark images

• Test results

σ	BM3D	MLP	EPLL	WNNM	DnC
5	38.23	-	37.90	38.45	37
10	34.69	34.45	34.26	34.95	34
15	32.74	-	32.27	32.99	32
20	31.40	-	30.90	31.63	31
25	30.33	30.25	29.79	30.57	30
50	27.08	-	26.52	27.39	27
75	25.21	-	24.62	25.51	18
100	23.96	-	23.42	24.27	14

23.24

23.41

- Doubly mismatched case (Test $\sigma = 75$)

Model σ for N-AIDE _S	5	1(
Fine-tuning $\sigma = 75$	22.47	21.
Fine-tuning $\sigma = 100$	22.27	21.

The 68 Berkeley test images

σ	BM3D	MLP	EPLL	WNNM	DnCNN-E
5	37.58	-	37.55	37.76	37.65
10	33.31	33.49	33.37	33.55	33.71
15	31.07	-	31.19	31.32	31.60
20	29.61	-	29.73	29.83	30.19
25	28.56	28.95	28.67	28.81	29.15
50	25.60	-	25.66	25.89	26.20
75	24.19	-	24.09	24.36	18.68
100	23.23	-	23.05	23.38	14.29