AASP-P11.6

End-to-end Sound Source Enhancement using Deep Neural Network in the Modified Discrete Cosine Transform Domain

<u>Yuma Koizumi¹, Noboru Harada¹, Yoichi Haneda², Yusuke Hioka³, Kazunori Kobayashi¹</u> ¹ NTT Media Intelligence Laboratories, Japan, ² The University of Electro-Communications, Japan, ³ The University of Auckland, New Zealand

Goal: retrieve target source from single channel observed signal recorded in noisy environment **Problem:** real-valued T-F mask in DFT-domain cannot manipulate both amplitude and phase of the spectrum

1: Monaural source enhancement	3: Proposed method
□ Retrieving target source s_t from single channel noisy observed signal x_t in real-time □ Time-frequency (T-F) mask has been used $x_t = s_t + n_t$ DFT $X_{\omega,k} = S_{\omega,k} + N_{\omega,k}$ Mask $\hat{S}_{\omega,k} = G_{\omega,k} X_{\omega,k}$, where $0 \leq G_{\omega,k} \leq 1$	 DNN estimates T-F masks Pros manipulate both a spectrum by using DNN output units fewer than those
2: DNN-based T-F mask estimation	 Cons I directly manipulation directly di
■ DNN have been used as regression function to estimate (real-valued) T-F mask $\hat{G}_{k} = \mathcal{M}(\phi_{k} \Theta) \qquad \qquad$	■ Whole procedure of source written using real-valued r ⇒ enable to simultaneously r domain aliasing, by resulting end-to-end system $\mathcal{J}(\Theta) = \sum_{k=2}^{K-1} \mathbf{s}_k - \hat{\mathbf{s}}_k _1, \hat{\mathbf{s}}_k = \mathbf{O} \begin{bmatrix} \mathbf{x}_{k-1} & \mathbf{x}_k & \mathbf{x}_k \\ \mathbf{x}_{k-1} & \mathbf{x}_k & \mathbf{x}_k \end{bmatrix}$
Any real-valued T-F mask cannot perfectly retrieve $S_{\omega,k}$ when phase spectrum of $S_{\omega,k}$ does not coincide with $N_{\omega,k}$ To estimate complex-valued T-F mask, more complicated DNN is required [2]	IMDCT IMDCT IM Neural network-based regree <i>e.g.</i> DNN and LS
Idea: to use more efficient signal representation than DFT spectrum for DNN-based source enhancement	
Which domain have high affinity for DNN-based source enhancement?	$\mathbf{C}: \mathbf{MDCT} \text{ matrix}, \mathbf{W}: \text{ wind}$

$$\mathcal{J}^{\text{PSA}}(\Theta) = \sum_{k=1}^{K} ||\mathbf{S}_k - \mathcal{M}(\boldsymbol{\phi}_k|\Theta) \odot$$

Theme: Which domain have high affinity for DNN-based source enhancement? **Proposed**: (1) using MDCT instead of DFT and (2) extending DNN-based source enhancement to end-to-end system by using real-valued T-F masks **Result**: several kinds of objective scores were significantly higher than SOTA methods

□ Speech enhancement in several noise & SNR cond. ■ Training: 6,640 Japanese speech + CHiME-3 noise data (augmented to several SNR cond.) Test: 300 Japanese speech + 4 environmental noise at SNR levels of -6, 0, 6, and 12 dB

DNN: 4 hidden layers with 512 hidden units ■ LSTM: 2 LSTM-layers with 512 cells Activation: rectified linear unit (ReLU) Optimizer: Adam with layer-by-layer training

					_
	T-F mask	SDR	STOI	PESQ	- Compared with three
	-	1.19	64.7	1.26	Compared with thre
	PSA	5.57	75.1	1.87	SOTA methods
	cIRM	4.58	75.6	1.77	
	Proposed	*5.97	*76.5	*1.94	PSA [1]
	PSA	*6.73	78.7	2.02	Real-valued T-F mask in
	cIRM	5.35	77.9	1.95	DFT-domain
	Proposed	6.43	*79.6	2.03	
	-	8.40	83.3	1.95	
I	PSA	10.61	85.9	2.38	cIRM [2]
	cIRM	9.84	86.1	2.28	Complex-valued T-F mask – in DFT-domain
	Proposed	*11.70	*89.0	*2.50	
	PSA	11.86	89.5	2.54	
	cIRM	10.55	88.3	2.46	
	Proposed	*12.09	*90.6	2.57	- SEGAN [4]
I	-	14.06	92.2	2.39	Time-domain end-to-end source enhancement
	PSA	15.02	92.3	2.76	
	cIRM	13.58	92.2	2.72	
	Proposed	*16.63	*94.8	*2.92	
	PSA	16.40	94.8	2.92	Significantly outperformed
	cIRM	14.56	93.8	2.87	
	Proposed	*16.97	*95.5	*2.97	conventional methods
	-	18.73	95.7	2.72	
┨	PSA	18.88	95.9	3.09	in terms of SDR, STOI
	cIRM	16.00	95.3	3.12	and PESQ scores in
	Proposed	*21.07	*97.3	*3.30	almost all SNR conditions ($\alpha = 0.05$)
	PSA	20.60	97.2	3.25	
	cIRM	17.43	96.4	3.22	
	Proposed	*21.50	*97.7	*3.34	

MDCT has high affinity for DNN-based source enhancement

5: Selected references

[1] H. Erdogan +, ICASSP, 2015. [2] D. S. Williamson +, IEEE Trans. ASLP, 2016. [3] F. Keuch+, WASPAA, 2007. [4] S. Pascual +, Interspeech, 2017.