Robust M-Estimation Based Matrix Completion
Michael Muma, Wen-Jun Zeng, Abdelhak M. Zoubir

Signal Processing Group - Technische Universität Darmstadt - Email: {muma,zoubir}@spg.tu-darmstadt.de, wenjzeng@gmail.com

Signal Model and Motivation

Signal model: Observed matrix \(\mathbf{X} \in \mathbb{R}^{n \times r} \) modeled as

\[
\mathbf{X} = \mathbf{M} + \mathbf{S} + \mathbf{N}
\]

- \(\mathbf{M} \): low-rank matrix of rank \(r \)
- \(\mathbf{S} \): column or entry-wise sparse outlier matrix
- \(\mathbf{N} \): (impulsive) background noise

Goal: Recover the low-rank component \(\mathbf{M} \) from partially observed entries of \(\mathbf{X} \) corrupted by noise and outliers.

Applications: recommender systems, computer vision, image inpainting, biomedicine, information retrieval

Existing Robust Matrix Completion Approaches

Robust \(\ell_p \)-loss based methods [1]:
- \(\ell_p \) robust and computationally efficient
- \(\ell_p \) statistically inefficient with respect to additional background noise
- \(\ell_p \) easily get stuck at an inferior solution (nonsmooth objective function)

Robust norm regularization of Huber's loss function approach [2]:
- \(\ell_p \) requires SVD at each iteration and has a high complexity

Proposed Robust M-Estimation Based Approach

Outlier-robust “norm” of \(\mathbf{X} \) is defined as

\[
\|\mathbf{X}\|_{\rho,c} = \sum_{i=1}^{n} \sum_{j=1}^{r} \rho_{\rho,c}\left(\frac{x_{ij}}{c}\right)
\]

- \(\rho > 0 \): scale parameter
- \(x_{ij} \): \((i,j) \)-th entry of \(\mathbf{X} \)
- \(\rho(x) \): differentiable loss function, e.g., Huber’s or Tukey’s

Proposed robust \(\ell_{\rho,c} \)-minimization based matrix completion:

\[
\min_{\mathbf{U}, \mathbf{V}} \|\mathbf{U}\mathbf{V}^\top - \mathbf{X}\|_{\rho,c}
\]

- Computationally efficient direct matrix factorization \(\hat{\mathbf{M}} = \mathbf{U}\mathbf{V}^\top \), where \(\mathbf{U} \in \mathbb{R}^{n \times r} \) and \(\mathbf{V} \in \mathbb{R}^{r \times r} \) to make the estimate \(\hat{\mathbf{M}} \) low-rank
- \(\{x_{i,j}\} = 0 \) if \((i,j) \) either \(\notin \Omega \) or \(\{x_{i,j}\} = \hat{x}_{i,j} \) if \((i,j) \in \Omega \).
- \(\rho \): unknown and is estimated jointly with \(\mathbf{U}, \mathbf{V} \)
- \(c \): constant that is set in advance

Algorithms

Algorithm 1: Huber’s M-estimator

Input: \(\mathbf{X}_{\text{obs}}, \Omega, \) and rank \(r \)

Initialize: Randomly initialize \(\mathbf{U}^0 \in \mathbb{R}^{n \times r} \)

for \(k = 0, 1, \ldots \) do

\[
\mathbf{v}^{k+1} = \arg \min_{\mathbf{v}} \left\{ \sum_{i,j} \rho_{\text{hub}}\left(\frac{x_{ij} - \mathbf{u}^k_j \mathbf{v}_i}{c}\right) + \|\mathbf{v}\|_{1}(\alpha c) \right\}
\]

for all \(j = 1, 2, \ldots, n_r \)

\[
\text{// Fix } \mathbf{v}^k, \text{ optimize } \mathbf{U}^k \]

\[
\mathbf{u}^{k+1} = \arg \min_{\mathbf{u}} \left\{ \sum_{i,j} \rho_{\text{hub}}\left(\frac{x_{ij} - \mathbf{u}_i \mathbf{v}^k_j}{c}\right) + \|\mathbf{u}\|_{1}(\alpha c) \right\}
\]

end for

Output: \(\hat{\mathbf{M}} = \mathbf{U}^k \mathbf{V}^{k+1} \)

 Algorithms

Proposed robust M-estimation based matrix completion: \(\min_{\mathbf{U}, \mathbf{V}} \|\mathbf{U}\mathbf{V}^\top - \mathbf{X}\|_{\rho,c} \) using an iteratively reweighted least-squares (IRWLS) algorithm.

Robust Statistics for Signal Processing.

References

