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Motivation

• Performance of single automotive radar is subject to either small aperture or
limited field of view(FoA). It is of great interests to improve the automotive radar
performance through radar networking.

• In a Connected and Automated Vehicular (CAV) system:
⋆ vehicle-to-vehicle (V2V) communications
⋆ vehicle-to-infrastructure (V2I) communications
Enables collaborative space-time adaptive processing (STAP).

• We formulate a collaborative target detection problem in automotive radar.

• The transmitted signals need to be orthogonal to be distinguishable at the
receiver → In a CPI, the antennas need to take turns to transmit → We propose
to incorporate TDM by designing a transmitter scheduling matrix for the platoon
of vehicles.
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Motivation

RX/TX 1

TX 3

TX 2

A simplified illustration of a CAV platoon consisting of three vehicles, sensing a target in the
FoV of all three vehicles. The radar on vehicle 1, denoted by RX/TX1, leads the platoon and is
assisted by two other radars, denoted by TX2 and TX3.
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Collaborative STAP

- We consider a network of K cooperative vehicles, the received signal at the
designated range bin at the m-th Rx on vehicle i from the n-th Tx on vehicle k is
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Collaborative STAP

In order to decide whether a target is present in a particular known range-cell, we
perform binary hypothesis testing between H0 (target-free hypothesis) and H1

(target-present hypothesis), i.e.,

H0 : yk = nk

H1 : yk = αksk + nk, (3)

where αk is the complex target reflectivity factor and nk is the noise and interference
with covariance Rk. The log-likelihood ratio test statistic is given by,
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TDM Design

- The transmitted signals need to be orthogonal to be distinguishable at the receiver.
For this matter in a CPI the antennas need to take turns to transmit.

-At most one antenna within the platoon is allowed to transmit during each pulse.

-After performing TDM the received signal s̄ = [s̄1 , · · · , s̄K ]T is
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∈ {0, 1}L×KN is a permutation matrix and called the

waveform selection matrix.
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TDM Design

We intend to maximize the target detection performance. We use the mean of the test
statistic as the design criteria. Consequently the TDM design problem is

P1 : maximize
J

E {ζ|H1}

subject to
∑
p

Jpn = 1, p, n ∈ {1, . . . , L};∑
n

Jpn = 1;

Jpn ∈ {0, 1}. (6)
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TDM Design

- The probability of detection and false alarm are obtained respectively as

P
D
= Pr {ζ > γ|H1} = 1− Pr {ζ ≤ γ|H1} = 1− Fζ|H1

(γ|H1),

P
FA

= Pr {ζ > γ|H0} = 1− Pr {ζ ≤ γ|H0} = 1− Fζ|H0
(γ|H0), (7)

where Fζ|H(.) is the cumulative distribution function of the test statistic with
hypo-exponential distribution. We have

E {ζ|H1} =
K∑
k=1

1 + 2|αk|2sHk R−1
k sk. (8)

By substituting (5) in (8) we obtain the quadratic objective
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Solution Methodology

P3 : maximize
J∈Ω

vec (J)H S̄ vec (J) . (10)

where Ω is the set of permutation matrices i.e.

Ω =

{
J

∣∣∣∣ ∑
p
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∑
n

Jpn = 1, (11)

Jpn ∈ {0, 1}, p, n ∈ {1, . . . , L}

}
.
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Solution Methodology

One can locally optimize P3 by resorting to power method-like iterations of the form

P4 : minimize
J(s+1)∈Ω

∥vec
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)
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)
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We define the matrix C(s) = −vec−1
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(
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))
. It is straightforward to see P4 is

equivalent to

P5 : minimize
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Tr
(
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)
. (13)

- This problem is in fact a linear assignment problem with cost matrix C(s)H that can
be solved efficiently using the Hungarian algorithm also known as Munkres assignment
algorithm, with computational complexity of O(L2).
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TDM Design algorithm for collaborative sensing

Algorithm 1 Power method-like iterations for transmitter scheduling in CAVs.

Input The overall steering vector of the CAV s̄
Initialization J(0) ∈ Ω, s = 0

1: S̄ = λmI− S
2: While

∣∣[ f(J(s+1))− f(J(s))
]
/f(J(s))

∣∣≥ ϵ do

3: C(s) = −vec−1
L,L

(
S̄ vec

(
J(s)

))
4: J(s+1) ← Hungarian(C(s)H)
5: s← s+ 1
6: Jopt ← J(s)

7: Output Jopt
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Numerical Experiments
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RoC of detection for a CAV of FMCW radars. The optimized TDM is compared with uniform
transmission where the antennas are activated uniformly in a sequence.
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Thank you!

Email: Zesmae2@uic.edu


