Large Margin Training Improves Language Models For ASR

Jilin Wang
Boston University
Boston, MA, USA

Jiaji Huang
Kenneth Ward Church
Baidu Research,
Sunnyvale, CA, USA

2021 IEEE International Conference on Acoustics, Speech and Signal Processing
Basic Structure of an Auto Speech Recognition (ASR) System
N-Best Rescoring

Language Model
Perplexity

\[PPL = \exp \left\{ - \frac{1}{|X|} \text{Score}(X) \right\} \]

- Scores of beams candidate from decoder are given by their likelihood

- Fine-tune an LM by minimizing the **Perplexity (PPL)** on the “gold” references could fit it to the ground-truth transcriptions

- No information from ASR beam candidates utilized

- Sometimes propose “bad” hypotheses -> give a higher score on inferior hypotheses than the “gold” reference
Large Margin Language Model (LMLM)

\[LMLM = \sum_{i=1}^{K} \sum_{j=1}^{N} \max\{0, \tau - (\text{Score}(X_i) - \text{Score}(X_{i,j}))\} \]
\[h_t = f(h_{t-1}, x_t) \]

Causal

\[h_t = g(x_t, \text{self attention}(x_t, X_{\text{context}})) \]

Non-Causal

Diagram

- **LSTM**
 - Cell state: \(C_t \)
 - Input gate: \(i_t \)
 - Forget gate: \(f_t \)
 - Output gate: \(o_t \)
 - New cell state: \(\tilde{C}_t \)
 - Output: \(h_t \)

- **Transformer**
 - **Encoder**
 - Self-Attention
 - Feed Forward
 - Add & Normalize
 - **Decoder**
 - Self-Attention
 - Encoder-Decoder Attention
 - Feed Forward
 - Add & Normalize

Language Model
Score (Likelihood) of a Sentence

Causal

\[\text{Score}^c(X) = \sum_{t=1}^{X} \log P(x_t|X_{<t}; \theta) \]

\[X_{<t} = [X_1, ..., X_{t-1}] \]

Non-Causal

\[\text{Score}^m(X) = \sum_{t=1}^{X} \log P(x_t|X_{\backslash t}; \theta) \]

\[X_{\backslash t} = [X_1, ..., X_{t-1}, X_{t+1}, ..., X_{|X|}] \]
Experiment

- Experiment with **LibriSpeech** benchmark.
- Baseline Decoder:
 - Acoustic model: chain system based on Factorized Time Delay Neural Network (TDNN-F)
 - Language model: Trigram LM
- Language models for rescoring:
 - **LSTM**: Causal, 4 layers, 512 hidden dimension
 - **Transformer Decoder**: Causal, 12 layers, 768 hidden dimension, 12 self-attention heads
 - **Transformer Encoder**: Non-causal, 12 layers, 768 hidden dimension, 12 self-attention heads

All neural LMs are pretrained on a joint of enWiki and bookCorpus.
Empirical Results

• Lowest WER is achieved with Transformer Encoder+LMLM training
• LMLM training significantly decreases WER for LSTM and Transformer Encoder
• Transformer Decoder without LMLM training is already very competitive.
• May be caused by the fundamental difference between causal LM score and non-causal LM score.

Published WERs*

- Without LMLM
- With LMLM

Baseline
Oracle

- Lowest WER is achieved with Transformer Encoder+LMLM training
- LMLM training significantly decreases WER for LSTM and Transformer Encoder
- Transformer Decoder without LMLM training is already very competitive.
- May be caused by the fundamental difference between causal LM score and non-causal LM score.

Thank you!