Dimensional Analysis of Laughter in Female Conversational Speech

Mary Pietrowicz^{1,2}, Carla Agurto¹, Jonah Casebeer², Mark Hasegawa-Johnson³, Karrie Karahalios², and Guillermo Cecchi¹ IBM Thomas J Watson Research Center¹, and University of Illinois Departments of Computer Science² and Electrical and Computer Engineering³

Abstract

How do people hear laughter in expressive, unprompted speech? What is the range of expressivity and function of laughter in this speech, and how can laughter inform the recognition of higher-level expressive dimensions in a corpus? This paper presents a scalable method for collecting natural human description of laughter, transforming the description to a vector of quantifiable laughter dimensions, and deriving baseline classifiers for the different dimensions of expressive laughter. Then, it explores the impact of leveraging nuances of laughter in the recognition of higher-level, general expressive dimensions, discovered in the same way, such as genuine happiness, sarcasm, nervous reflection, and more. The performance of the low-level laughter classifiers is presented, along with the performance of the high-level laughteraware and laughter-unaware classifiers.

- **RQ1:** What perception-grounded dimensions of
- laughter can be found in conversational speech? **RQ2:** How can these discovered dimensions of laughter be modeled acoustically?
- **RQ3:** How can the resulting laughter models be used to recognize other dimensions of vocal expression?

Data Corpus

The study corpus included selected oral history interviews from the Veterans History Project at the Library of Congress¹. These interviews had a similar format across all samples, covered similar topics of discussion across speakers, encouraged unscripted storytelling and discussion, and provided a diverse range of natural laughter to explore.

- Library of Congress Veterans' History Project
- **10 representative female speakers**
- **120 laughter events**
- Young veterans from recent conflicts, post-1995
- **Original recordings made on modern media**
- **Interviews were approximately 1 hour in duration**

Prior work² evaluated the overall expressive dimensionality of the surrounding speech context (sentences and phrases) of the laughter events.

Table 1: Perceived expression in the speech phrases and sentences which surrounded the laughter.

Dim ²	Description
G1	Sincere, high-energy/high-affect, with laughter
G2	Joking, sarcastic, and nervous, with laughter
G3	Low affect, with nervous energy
G4	Positive affect, with reflection and calm

How would listeners perceive the laughter alone, and could analysis of laughter help us recognize these higher-level modes of expression?

descriptors and sound clips revealed the types of expressive laughter present in the corpus. Positive and negative descriptor associations tell us what each laughter dimension is and isn't.

Dim	Laughter Dimension Description (LSA)	Weight			
L1 Neg:	High-variance laughter with opposing qualities Low, happy, fast, slow, scared, & many others	0.053			
L2 Pos: <i>Neg:</i>	Genuine happiness; sustained, voiced giggles Happy, genuine, giggle, chuckle, long Scared, air, gasp, breathy, quiet, short, soft	0.029			
L3 Pos: <i>Neg:</i>	Short, sad, low-pitched, voiced chuckles Short, chuckle, low <i>Happy, giggle, long, inhale, exhale, gasp</i>	0.022			
L4 Pos: <i>Neg:</i>	Fast, feminine, talking				
L5 Pos: <i>Neg:</i>	Deep, resonant, and slow Sincere, deep, resonant, slow, relaxed <i>Nervous, surprised</i>	0.018			
L6 Pos: <i>Neg:</i>	Soft, fast, and gruff Quiet <i>Feminine, slow</i>	0.018			
L7 Pos: <i>Neg:</i>	Gentle, quiet, sustained, and nervous Nervous, worried, quiet, soft Surprised, short, loud	0.017			
L8 Pos: <i>Neg:</i>	Surprised and shocked Surprised, shocked, alarmed Happy, sad	0.017			
L9 Pos: <i>Neg:</i>	Nervous, unsure, tense, amusement Quiet, amused, nervous, unsure Soft	0.017			
L10 Pos: <i>Neg:</i>	Sustained, nervous, fast, and voiced Nervous, fast, long <i>Airy</i>	0.016			
L11 Pos: <i>Neg:</i>	Loud, strong, syllables Huh <i>Quiet, feminine</i>	0.016			
L12 Pos: <i>Neg:</i>	Sarcastic and confident Sarcastic, sure Surprised	0.016			

Laughter Models

To address **RQ2**, we created an ensemble of regression models which measured how closely a laughter sample matched the top 8 laughter types we discovered. Features were selected from an extended openSMILE³ ComParE13 set. Results are sonic laughter fingerprints via a LaughterToVec style model.

 Table 3: Ridge regression performance for each viable
 dimension of laughter. The top 5 feature groups are shown here, with a '*' indicating multiple statistical variants (e.g., skewness, percentile, etc.) on the base feature. The 3rd column shows the Spearman R, the mean squared error (mse), and the number of features (#) retained in the final model.

Dim	Best 5 Feature Groups *multiple statistical functionals	R mse (#)			
L2	Genuine happiness; sustained, voiced giggles pcm_fftMag_spectralFlux_sma* audSpec_Rfilt_sma[6, 18, 22]* pcm_RMSenergy_sma* audspecRasta_length_L1norm* mfcc_sma_de[4]*	0.65 0.028 (60)			
L3	Short, sad, low-pitched, voiced chuckles pcm_fftMag_fband1000-4000_sma_quartile1 mfcc_sma[2]* F0final_sma* pcm_fftMag_spectralRollOff* Joint_Laughter	0.60 0.001 (37)			
L4	Fast, sure, simultaneous talking and Laughing pcm_fftMag_spectralSlope_sma_de* pcm_RMSenergy_sma_upleveltime25 pcm_fftMag_fband250-650_sma_flatness pcm_fftMag_spectralSlope_sma* pcm_fftMag_spectralHarmonicity_sma*	0.42 0.001 (11)			
L5	Deep, resonant, and slow mfcc_sma_de[8]_maxSegLen mfcc_sma[4]_maxSegLen audspec_Rfilt_sma[21]_kurtosis mfcc_sma_de[14]_upleveltime25 audSpec_Rfilt_sma[24]_skewness	0.28 0.023 (10)			
L6	Soft, fast, and gruff audSpec_Rfilt_sma[10, 19, 23, 24, 25]* audSpec_Rfilt_sma_de[6, 24, 25]* pcm_fftMag_spectralVariance_sma* jitterLocal_sma_minPos F0final_sma_quartile2	0.16 0.020 (26)			
L7	Gentle, quiet, sustained, and nervous pcm_RMSenergy_sma* logHNR_sma_de_upleveltime25 pcm_fftMag_spectralHarmonicity_sma* Joint_Speak Audspec_lengthL1norm_sma*	0.41 0.021 (26)			
L10	Sustained, nervous, fast, and voiced audSpec_Rfilt_sma[24]_upleveltime50 audSpec_Rfilt_sma[6]_minPos mfcc_sma[9]_peakRangeRel audSpec_Rfilt_sma_de jitterDDP_sma_lpc4	0.11 0.028 (9)			
L12	Sarcastic and confident pcm_fftMag_spectralCentroid_sma* mfcc_sma[10]_maxPos audSpec_Rfilt_sma_de[17] pcm_zcr_sma_upleveltime50 audSpec_Rfilt_sma_de[2]_kurtosis	0.13 0.038 (7)			

Can laughter fingerprints could help us identify general modes of vocal expression (RQ3)? The answer is yes for some difficultto-recognize kinds of vocal expression, notably sarcasm.

Table 4: Using laughter segments to classify the expressive quality of the containing phrase vs. using acoustic features alone. The first column identifies the high-level expressive dimension of the containing phrase. The second column shows the best components of the laughter fingerprint for recognizing the corresponding General Expressive Dimension. The 3rd and 4th columns show the Average Unweighted Recall (AUR) of classifiers which use only laughter fingerprints as features, and the f classifiers which use only low-level acoustic features.

	AUI	R of
		E D
	G1:	Sino higl
	G2:	Jok & n
	G3:	Low nerv
	G4:	Pos refle
	Т	his
	1	. A d
	2	u . A la
		W C
	3	u D ir
		t
	tech the	_
-		
_	Refe 1	. Ve
	2	at . Ma
		Ka Ex

Using Laughter

General Expressive Dimension ²	Best Laughter Features	AUR Laughter Only	AUR Acoustic Only
ncere, high-energy, gh-affect	L4	0.67	0.79
king, sarcastic, nervous	ALL	0.67	0.60
w affect, with rvous energy	L3, L4, L5	0.71	0.80
sitive affect, with lection and calm	L5, L12	0.75	0.61

Conclusions

work makes the following contributions:

new technique for discovering perception-grounded dimensions of laughter in a corpus (RQ1)

A new technique for analyzing laughter as sonic aughter fingerprints via a LaughterToVec style model which measures how closely a given laugh matches the characteristics of the discovered dimensions of laughter **RQ2**)

Demonstration of the use of "laughter fingerprints" to mprove the recognition of sarcasm and other difficultto-recognize expression in speech (RQ3)

ture work will expand the exploration of laughter, apply the ques to other kinds of paralingual expression, and explore ationship of laughter to health and wellness states.

ices

- eterans History Project at the Library of Congress, available t https://www.loc.gov/vets/
- fary Pietrowicz, Mark Hasegawa-Johnson, and Karrie arahalios, "Discovering Dimensions of Perceived Vocal xpression in Semi-structured, Unscripted Oral History Accounts," ICASSP 2017.
- 3. OpenSMILE feature extraction tool, available at https://www.audeering.com/opensmile/