Multi Image Depth from Defocus Network with Boundary Cue for Dual Aperture Camera

Gwangmo Song, Yumee Kim, Kukjin Chun, Kyoung Mu Lee
Seoul National University

Presenter : Gwangmo Song
Introduction

• Depth estimation problem
• Double defocused images (Different Depth-of-Field)
Previous Works

- **MRF-based vs. DNN-based**
- Depth from Defocus (DFD) problem [1,2]
- Dual DFD [3]

Introduction

• Contributions

Boundary Cue
- Edge information
- Improve accuracy

Real dataset
- Collect new dataset
- Limited circumstance
Dual DFD Network

Dual aperture Input

Shallow DoF Deep DoF

CONV CONV CONV CONV

N Res. Blocks N Res. Blocks N Res. Blocks

Add.

CONV

Depth map

Res. Block

CONV ReLU CONV

Sub.
Dual DFD Network

• Boundary Cue
 • Homogeneous region has less effect of blur
 • Subtraction highlights around the edge of the object
Dual DFD Network

Dual aperture Input

Shallow DoF Deep DoF

Sub.

Add.

CONV CONV CONV Add.

N Res. Blocks

Add.

CONV CONV CONV Add.

N Res. Blocks

Add.

CONV CONV CONV Add.

N Res. Blocks

CONV ReLU CONV

Res. Block

CONV

Depth map

Dual aperture Input

Shallow DoF Deep DoF

Sub.

Add.

CONV CONV CONV Add.

N Res. Blocks

Add.

CONV CONV CONV Add.

N Res. Blocks

Add.

CONV CONV CONV Add.

N Res. Blocks

CONV ReLU CONV

Res. Block

CONV

Depth map
Dual DFD Network

• Main Network
 • EDSR \[1\] based
 • Baseline network \[2\]

Dual DFD Network

Dual aperture Input

Shallow DoF Deep DoF

N Res. Blocks N Res. Blocks N Res. Blocks

Depth map

Res. Block

CONV CONV CONV

Sub.

CONV CONV CONV

CONV RELU CONV

CONV CONV CONV

CONV CONV CONV
Datasets

• Synthetic dataset [1]
 • Dual defocused dataset
 • NYU-v2 dataset
 • Using thin lens model ($F_\# = 2, 14$)
 \[
 \sigma = \frac{1}{\sqrt{2}} \frac{p F_\# d_{IFP}}{d} \left(1 - \frac{d_{IFP}}{d} \right)
 \]
 • 795 training data and 654 test data

Datasets

• Real dataset
 • Tunable aperture camera
 • F\# = 1.8, 4.0
 • Static scene
 • LIDAR align
 • 199 training data and 100 test data
Datasets

• Real dataset
 • Parking lot
 • Maximum distance : 70m
 • 3 types of car, 3 types of pedestrian
Experiments

- Synthetic dataset
 - *NYU v2*-based
- *rel*
 - Average relative error
- *log10*
 - Average log_{10} error
- *rms*
 - Root mean square error

<table>
<thead>
<tr>
<th>Method</th>
<th>rel</th>
<th>log10</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single DFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwar et al. [1]</td>
<td>0.094</td>
<td>0.039</td>
<td>0.347</td>
</tr>
<tr>
<td>D3-Net [2]</td>
<td>0.068</td>
<td>0.028</td>
<td>0.274</td>
</tr>
<tr>
<td>D3-Net* [2]</td>
<td>0.036</td>
<td>0.016</td>
<td>0.144</td>
</tr>
<tr>
<td>D3-Net** [2]</td>
<td>0.056</td>
<td>0.024</td>
<td>0.244</td>
</tr>
<tr>
<td>Dual DFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3-Net** [2]</td>
<td>0.030</td>
<td>0.013</td>
<td>0.164</td>
</tr>
<tr>
<td>Song et al. [3]</td>
<td>0.028</td>
<td>0.012</td>
<td>0.154</td>
</tr>
<tr>
<td>Our</td>
<td>0.026</td>
<td>0.011</td>
<td>0.139</td>
</tr>
</tbody>
</table>

* Using dataset of [1]
** Using dataset of [3]

Experiments

- Ablation Study
- Effect of boundary cue

<table>
<thead>
<tr>
<th>Method</th>
<th>rel</th>
<th>log10</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.031</td>
<td>0.013</td>
<td>0.162</td>
</tr>
<tr>
<td>Boundary Cue</td>
<td>0.028</td>
<td>0.012</td>
<td>0.146</td>
</tr>
<tr>
<td>Boundary Cue + Skip Conn.</td>
<td>0.026</td>
<td>0.011</td>
<td>0.139</td>
</tr>
</tbody>
</table>
Experiment

- Qualitative

[Image: Images and depth maps of two different images with annotations for Gwangmo Song and Kyoung Mu Lee's work on depth estimation for dual defocused images.]

Experiments

- **Real dataset**
- **Patch-size**
 - 224 vs. 48
 - Homogeneous region
- **GT depth map**
 - Sparse LIDAR point
 - Boundary is **not clean**
 - Boundary cue ↓

<table>
<thead>
<tr>
<th>Method</th>
<th>rel</th>
<th>log10</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single DFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3-Net [1]</td>
<td>0.027</td>
<td>0.012</td>
<td>2.070</td>
</tr>
<tr>
<td>Dual DFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3-Net [1]</td>
<td>0.027</td>
<td>0.012</td>
<td>1.202</td>
</tr>
<tr>
<td>Song et al. [2]</td>
<td>0.019</td>
<td>0.008</td>
<td>1.400</td>
</tr>
<tr>
<td>Our</td>
<td>0.018</td>
<td>0.008</td>
<td>1.320</td>
</tr>
</tbody>
</table>

Experiment

- Qualitative

<table>
<thead>
<tr>
<th>Image ($F_# = 1.8$)</th>
<th>Image ($F_# = 4$)</th>
<th>GT depth map</th>
<th>Our result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiments

- Object-based measure
 - Ignore sky, road
 - Center of object
 - Mean value of bounding box

<table>
<thead>
<tr>
<th>Method</th>
<th>rel</th>
<th>log10</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single DFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3-Net [1]</td>
<td>0.045</td>
<td>0.020</td>
<td>1.064</td>
</tr>
<tr>
<td>Dual DFD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3-Net [1]</td>
<td>0.041</td>
<td>0.018</td>
<td>0.943</td>
</tr>
<tr>
<td>Song et al. [2]</td>
<td>0.040</td>
<td>0.016</td>
<td>0.887</td>
</tr>
<tr>
<td>Our</td>
<td>0.031</td>
<td>0.013</td>
<td>0.718</td>
</tr>
</tbody>
</table>

• Create **boundary cue** through dual defocused images
• Proposal of **DFD network** structure using boundary cue
• Dataset collection using tunable aperture camera
• Record **SOTA** in synthetic and real dataset