AUDIO ANALYSIS LAB

¹ Audio Analysis Lab, CREATE, Aalborg University, DK

Introduction

- > Information on the type of distortion corrupting a signal can be used to inform the choice of appropriate enhancement algorithms.
- > Most existing methods focused on detecting a single and specific type of distortion in a signal.
- > In [1], we proposed a method to classify four major types of distortion in vowels directly from MFCCs extracted from speech signals.
- Limitations of [1]:
 - ✤ MFCCs encode not only distortion in signals, but also other variability (speaker, articulation and disorder).
- Distortion classification decision is made by majority vote over all frames, and the computation time increases with increasing signal length. > In this paper, distortion in variable duration recordings is modeled with a
- fixed-length, low-dimensional vector.

Distortion Modeling

> Channel variability can be produced artificially by corrupting the clean recording by different types and levels of distortion.

> Method:

- Fitting a Gaussian mixture model (GMM) to the features of a recording. Assuming that the GMM mean supervector of the rth recording from the sth speaker can be decomposed as:

$M_{S,r} = m + V y_S + U x_{S,r} + D z_S.$

> Definitions:

- \succ *m* is speaker- and channel-independent supervector,
- \succ V is a rectangular matrix of low rank with high speaker variability
- \succ y_s is the speaker factor
- \succ U is a rectangular matrix of low rank with high channel variability
- $\succ x_{s,r}$ is the channel factor containing channel related information
- > **D** is a diagonal matrix describing any remaining speaker variability
- $\succ z_s$ is the speaker-specific residual factor
- > The factors $x_{s,r}$, y_s and z_s are assumed to be independent of each other and have a standard normal prior distribution.

> Estimating the matrices V, U, D, and the vectors $x_{s,r}$, y_s and z_s [2]: 1) Train V, assuming that U and D are zero.

- 2) Estimate U given the estimate of V and assuming that D is zero.
- 3) Estimate the residual matrix D given the estimates of V and U.
- 4) $x_{s,r}$, y_s and z_s are then calculated given the estimates of V, U and D.

A PARAMETRIC APPROACH FOR CLASSIFICATION OF DISTORTIONS IN PATHOLOGICAL VOICES

Amir Hossein Poorjam¹, Max A. Little^{2,3}, Jesper Rindom Jensen¹, Mads Græsbøll Christensen¹

² Engineering and Applied Science, Aston University, Birmingham, UK

¹ {ahp, jrj, mgc}@create.aau.dk,

Channel Factor and Subspace Estimation

- (1)

- > The channel factor $x_{s,r} \sim N(\mu_{s,r}, \Lambda_{s,r})$ and the channel subspace U are estimated by applying an EM algorithm [2].
- \succ In the E-step, using a random initialization of U, the posterior distribution of the channel factor is calculated as:

$$\boldsymbol{\mu}_{s,r} = E[\boldsymbol{x}_{s,r}] = (\boldsymbol{I} + \boldsymbol{U}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{N}_s \boldsymbol{U})$$

$$\boldsymbol{\Lambda}_{s,r} = E[\boldsymbol{x}_{s,r}\boldsymbol{x}_{s,r}^T] = \boldsymbol{\mu}_{s,r}\boldsymbol{\mu}_{s,r}^T + (\boldsymbol{x}_{s,r}^T)$$

> In the M-step, the channel subspace is updated by solving the equations:

$$\boldsymbol{U}_{i}\boldsymbol{\Theta}_{\boldsymbol{c}}=\boldsymbol{\Psi}_{\boldsymbol{i}}.$$

> Definitions:

- \succ Is a block-diagonal matrix entries form the covariance matrix of the c^{th} mixture of the UBM,
- > $N_{s,r,c} = \sum_{l=1}^{L} \gamma_{c,l}$ and $\mathbf{f}_{s,r,c} = \sum_{l=1}^{L} \gamma_{c,l} [\boldsymbol{\rho}_l (\boldsymbol{m}_c + \boldsymbol{V}_c \boldsymbol{y}_s)]$ are the zeroand first order statistics for each speaker s, recording r and mixture component *c*.
- \succ ρ_l is the acoustic features of the l^{th} frame
- \succ I is an identity matrix,
- > N_s is a block-diagonal matrix which its entries are $(\sum_r N_{s.r.c})I$
- \succ **f**_{*s*,*r*} is a vector constructed by concatenation of **f**_{*s*,*r*,*c*}
- $\succ \gamma_{c,l}$ is the posterior probability of the c^{th} mixture generating ρ_l ,
- \succ m_c and V_c are, respectively, the subvector of m and the submatrix of Vof mixture component *c*.
- $\succ \Theta_c = \sum_s \sum_r N_{s,r,c} \Lambda_{s,r} \quad c = 1, \dots, C$
- \blacktriangleright Ψ_i is the *i*th row of $\Psi = \sum_s \sum_r \mathbf{f}_{s,r,c} \boldsymbol{\mu}_{s,r}^T$

³ Media Lab, MIT, Cambridge, Massachusetts, USA

² max.little@aston.ac.uk

 $(U)^{-1}U^T\Sigma^{-1}\mathbf{f}_{s,r}$ (2)

 $(\boldsymbol{I} + \boldsymbol{U}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{N}_{S} \boldsymbol{U})^{-1}.$ (3)

(4)

Experimental Setup

Database:

- **Distortion Classes:**

 - Reverberation (8 different real room impulse responses)
 - Peak clipping (clipping level: 0.3, 0.4, 0.5, 0.6)
- Coding (6.3 kbps, 9.6 kbps and 16 kbps CELP codecs)
- Acoustic features:
- **Distortion Modeling:**
- GMM with 256 mixtures
- Speaker factor dim.: 0
- Channel factor dim.: 210

Classifiers:

- SVM with RBF kernel
- PLDA

Fig. 2: Performance of different configuration of the FA model.

System	Clean	Noisy	Reverb.	Clipped	Coded	Overall
Baseline	55 ± 11	97 ± 4	77 ± 4	82 ± 7	85 ± 9	79 ± 3
PLDA	100 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0	20 ± 0
PLDA + LDA	77 ± 4	98 ± 2	86 ± 4	82 ± 2	93 ± 3	87 ± 1
SVM	28 ± 18	33 ± 5	31 ± 16	35 ± 14	68 ± 12	39 ± 4
SVM + LDA	78 ± 3	97 ± 2	87 ± 4	85 ± 2	93 ± 3	88 ± 1

Conclusions

[1] A. H. Poorjam, J. R. Jensen, M. A. Little, and M. G. Christensen, "Dominant distortion classification for pre-processing of vowels in remote biomedical voice analysis," in INTERSPEECH, 2017, pp. 289–293. [2] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, "A Study of inter-speaker variability in speaker verification," IEEE Trans. Audio. Speech. Lang. Processing, vol. 16, no. 5, pp. 980–988, 2008.

• Parkinson's voice database (sustained vowels, 750 telephone recordings).

Results

Table 1: Comparison of [1] and the proposed method before and after pre-processing channel vectors using LDA. Results are in the form of mean ± STD.

• Distortion in variable duration signals is modeled by a fixed-length, lowdimensional vector which is more suitable for classification algorithms. • Channel vectors are more robust to small changes in signal characteristics than

MFCCs, they are more suitable for distortion classification in pathological voices.

References