Introduction

- Information on the type of distortion corrupting a signal can be used to inform the choice of appropriate enhancement algorithms.
- Most existing methods focused on detecting a single and specific type of distortion in a signal.
- In [1], we proposed a method to classify four major types of distortion in vowels directly from MFCCs extracted from speech signals.
- Limitations of [1]:
 - MFCCs encode not only distortion in signals, but also other variability (speaker, articulation, and disorder).
 - Distortion classification decision is made by majority vote over all frames, and the computation time increases with increasing signal length.
- In this paper, distortion in variable duration recordings is modeled with a fixed-length, low-dimensional vector.

Distortion Modeling

- Channel variability can be produced artificially by corrupting the clean recording by different types and levels of distortion.
- Method:
 - Fitting a Gaussian mixture model (GMM) to the features of a recording.
 - Assuming that the GMM mean vector of the i-th frame from the s-th speaker can be decomposed as:
 \[M_{s,i} = m + V y_s + U x_{s,i} + D z_{s,i} \]

Definitions:
- \(m \) is the channel-independent supervector,
- \(V \) is a rectangular matrix of low rank with high speaker variability
- \(y_s \) is the speaker factor
- \(U \) is a rectangular matrix of low rank with high channel variability
- \(x_{s,i} \) is the channel factor containing channel-related information
- \(D \) is a diagonal matrix describing any remaining speaker variability
- \(z_{s,i} \) is the speaker-specific residual factor
- The factors \(x_{s,i}, y_s, z_{s,i} \) are assumed to be independent of each other and have a standard normal prior distribution.

Estimating the matrices \(V, U, D \), and the vectors \(x_{s,i}, y_s, z_{s,i} \):
1. Train \(V \), assuming that \(U \) and \(D \) are zero.
2. Estimate \(U \) given the estimate of \(V \) and assuming that \(D \) is zero.
3. Estimate the residual matrix \(D \) given the estimates of \(V \) and \(U \).
4. \(x_{s,i}, y_s, z_{s,i} \) are then calculated given the estimates of \(V, U \), and \(D \).

Channel Factor and Subspace Estimation

- The channel factor \(x_{s,i} \sim N(\mu_{s,i}, \Lambda_{s,i}) \) and the channel subspace \(U \) are estimated by applying an EM algorithm.
- In the E-step, using a random initialization of \(U \), the posterior distribution of the channel factor is calculated as:
 \[\mu_{s,i} = E[x_{s,i} | U] = (I + U \Sigma_N U)^{-1} U \Sigma^{-1} x_{s,i} \]
 \[\Lambda_{s,i} = E[x_{s,i} x_{s,i}^T | U] = \mu_{s,i}^T \mu_{s,i} + (I + U \Sigma_N U)^{-1} \Sigma \]
- In the M-step, the channel subspace is updated by solving the equations:
 \[U^T \Theta = \Psi \]

Definitions:
- \(\Sigma \) is a block-diagonal matrix whose entries form the covariance matrix of the \(c \)-th mixture of the UBM,
- \(N_{s,i} = \sum_{j=1}^{L} p_r \) and \(f_{s,c,i} = \sum_{j=1}^{L} N_{r,i} p_r (m_c + V y_s) \) are the zero-and first order statistics for each speaker \(s \), recording \(r \) and mixture component \(c \).
- \(p_r \) is the acoustic features of the \(r \)-th frame
- \(I \) is an identity matrix,
- \(N_r \) is a block-diagonal matrix which its entries are \(\{N_r, N_{r,i}\} I \)
- \(f_{s,c,i} \) is a vector constructed by concatenation of \(f_{s,c,i} \)
- \(y_{s,r} \) is the posterior probability of the \(c \)-th mixture generating \(p_r \).
- \(m_c \) and \(V y_s \), are, respectively, the subvector of \(m \) and the submatrix of \(V \) of mixture component \(c \).
- \(\Theta_r = \sum_{c} N_{r,c} A_{s,c} \) \(c = 1, \ldots, C \)
- \(\Psi_r \) is the \(i \)-th row of \(\Psi \) is: \(\Psi = \sum_{c} f_{s,c,i} \mu_{s,i}^T \)

The Proposed Method

Channel Factor Extraction

- The channel factor \(x_{s,i} \sim N(\mu_{s,i}, \Lambda_{s,i}) \) and the channel subspace \(U \) are estimated by applying an EM algorithm.
- In the E-step, using a random initialization of \(U \), the posterior distribution of the channel factor is calculated as:
 \[\mu_{s,i} = E[x_{s,i} | U] = (I + U \Sigma_N U)^{-1} U \Sigma^{-1} x_{s,i} \]
 \[\Lambda_{s,i} = E[x_{s,i} x_{s,i}^T | U] = \mu_{s,i}^T \mu_{s,i} + (I + U \Sigma_N U)^{-1} \Sigma \]
- In the M-step, the channel subspace is updated by solving the equations:
 \[U^T \Theta = \Psi \]

Experimental Setup

- Database:
 - Parkinson’s voice database (sustained vowels, 750 telephone recordings).
- Distortion Classes:
 - Additive noise (white Gaussian, babble, office ambiance noises)
 - Reverberation (8 different real room impulse responses)
 - Peak clipping (clipping level: 0.3, 0.4, 0.5, 0.6)
 - Coding (6.3 kbps, 9.6 kbps and 16 kbps CELP codecs)
- Acoustic features:
 - 39 dimensional vector (12 MFCCs + frame energy + \(\Delta + \Delta \))
- Distortion Modeling:
 - GMM with 256 mixtures
 - Speaker factor dim.: 0
 - Channel factor dim.: 210
- Classifiers:
 - SVM with RBF kernel
 - PLDA

Fig. 2: Performance of different configuration of the FA model.

Results

<table>
<thead>
<tr>
<th>System</th>
<th>Clean</th>
<th>Noisy</th>
<th>Reverb.</th>
<th>Clipped</th>
<th>Coded</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>55 ± 11</td>
<td>97 ± 4</td>
<td>77 ± 4</td>
<td>82 ± 7</td>
<td>85 ± 9</td>
<td>79 ± 3</td>
</tr>
<tr>
<td>PLDA</td>
<td>100 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>20 ± 0</td>
</tr>
<tr>
<td>PLDA + LDA</td>
<td>77 ± 4</td>
<td>98 ± 2</td>
<td>86 ± 4</td>
<td>82 ± 2</td>
<td>93 ± 3</td>
<td>87 ± 1</td>
</tr>
<tr>
<td>SVM</td>
<td>28 ± 18</td>
<td>33 ± 5</td>
<td>31 ± 16</td>
<td>35 ± 14</td>
<td>68 ± 12</td>
<td>39 ± 4</td>
</tr>
<tr>
<td>SVM + LDA</td>
<td>78 ± 3</td>
<td>97 ± 2</td>
<td>87 ± 4</td>
<td>85 ± 2</td>
<td>93 ± 3</td>
<td>88 ± 1</td>
</tr>
</tbody>
</table>

Conclusions

- Distortion in variable duration signals is modeled by a fixed-length, low-dimensional vector which is more suitable for classification algorithms.
- Channel vectors are more robust to small changes in signal characteristics than MFCCs, they are more suitable for distortion classification in pathological voices.

References