PREDICTION OF NEGATIVE SYMPTOMS OF SCHIZOPHRENIA FROM EMOTION RELATED LOW-LEVEL SPEECH SIGNALS Debsubhra Chakraborty[†], Zixu Yang^{*}, Yasir Tahir[†], Tomasz Maszczyk[†], Justin Dauwels[†], Nadia Thalmann[†], Jianmin Zheng[†],

Introduction

- Schizophrenia is a chronic mental disorder affecting millions globally.
- It is characterised by **positive and negative** symptoms.
- Negative symptoms are **difficult to detect** with few effective drug treatments.
- One of the key negative symptoms is the lack of emotions in facial expressions and prosody.
- Emotional **impairment in speech prosody** has been studied lesser compared to blunting of facial affect.
- Patients are unable to identify emotion from voice due to their inability to process low-level acoustic features, such as pitch, intensity, frequency etc. [1,2].

Research Questions

Can the low-level acoustic signals be used to detect the severity of negative symptoms?

2 Can the same signals be used to differentiate between patients and healthy individuals?

		Patients	Controls
		(N = 52)	(N = 26)
Age	Mean (years)	30.3	29.6
	Range (years)	20-46	19-47
Gender	Male	25	12
	Female	27	14
Ethnicity	Chinese	44	22
	Malay	5	3
	Indian	3	1
Education	University	7	4
	Diploma/ Vocational	28	15
	High School	17	7

Demographics data of participants.

Yogeswary Maniam^{*}, Nur Amirah^{*}, Bhing-Leet Tan^{*} and Jimmy Lee^{*}

[†]Nanyang Technological University, Singapore and *Institute of Mental Health, Singapore

Overall setup

Design of Experiment

- 78 total participants in the study, with 52 **Patients** and 26 Healthy Controls.
- The audio and video of the participants are **recorded** while they are **interviewed** by a trained psychometrician.
- The psychometrician rates the participants' behavior on the NSA-16 scale [3].
- The interview is semi-structured, with no time-limit for responses, and no role-playing.
- Average duration of interview is 26 minutes, amounting to **34 hours of audio** data analysed.

System Overview

- Portable H4n recorder and lapel microphones to record audio.
- Low-level audio descriptors related to emotion recognition from openSMILE [4].
- The descriptors are: Intensity, Loudness, MFCC (12), Pitch, Probability of voicing, F_0 envelope, **LSF** (8), and **ZCR**.
- 19 statistical measures on the descriptors and their delta coefficients take the total number of features to **988**.

Institute for Media Innovation

Results

First, we present results of binary classification on the relevant NSA-16 items:

NSA-16 Items Classification						
NSA-16 Item	Accuracy	Baseline Accuracy	Algorithm			
Prolonged time to respond	82.69%	67.31%	kNN			
Restricted speech quantity Impoverished speech	82.69%	59.61%	Gaussian SVM			
content Emotion reduced range	61.54%	53.85%	kNN			
Affect: Reduced modulation	78.85%	50.00%	Adaboosted DT			
of intensity Reduced expressive gestures	84.62%	65.38%	Adaboosted DT			

Now, the results for Patients v/s Controls classification:

Patient v/s Controls Classification

Algorithm

Linear SVM

Linear SVM

Features	Accuracy	Baseline Accuracy
openSMILE audio	79.49%	66.67%
openSMILE audio + movement signals [5]	86.36%	65.15%

All classifications were performed with appropriate feature-selection and leave-one-out cross-validation.

Discussion

- NSA-16 items related even to speech and gestures can be reliably **predicted**.
- Prosody dysfunction and reduced display of gestures often co-exist with emotional impairment in negative symptoms of schizophrenia.
- It also leads to high accuracy for **Patient** v/s **Control** classification.

Conclusion

- Inability to process emotions in speech is a salient feature of negative symptoms.
- We utilized this effect to predict the subjective ratings and differentiate between patient and healthy individuals.
- Our goal is to move towards **automated**, **objective** assessment of mental health disorders.
- Such systems can assist clinicians to screen and track individuals for mental illnesses.

Acknowledgements

- Singapore Ministry of Health's National Medical Research Council Center Grant.
- Nanyang Institute of Technology in Health and Medicine Grant.
- Being Together Center, Institute for Media Innovation.
- RRIS Rehabilitation Research Grant.
- Interdisciplinary Graduate School.

References

- [1] Rinat Gold, Pamela Butler, Nadine Revheim, David I Leitman, John A Hansen, Ruben C Gur, Joshua T Kantrowitz, Petri Laukka, Patrik N Juslin, Gail S Silipo, et al. Auditory emotion recognition impairments in schizophrenia: relationship to acoustic features and cognition. American Journal of Psychiatry, 169(4):424–432, 2012.
- [2] David I Leitman, Petri Laukka, Patrik N Juslin, Erica Saccente, Pamela Butler, and Daniel C Javitt. Getting the cue: sensory contributions to auditory emotion recognition impairments in schizophrenia. Schizophrenia bulletin, 36(3):545–556, 2008.
- [3] Nancy C Andreasen. Negative symptoms in schizophrenia: definition and reliability. Archives of General Psychiatry, 39(7):784–788, 1982.
- [4] Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM international conference on Multimedia, pages 1459–1462. ACM, 2010.
- [5] Debsubhra Chakraborty, Yasir Tahir, Zixu Yang, Tomasz Maszczyk, Justin Dauwels, Daniel Thalmann, Nadia Magnenat Thalmann, Bhing-Leet Tan, and Jimmy Lee. Assessment and prediction of negative symptoms of schizophrenia from rgb+ d movement signals. 2017.