SUPER-RESOLUTION DOA ESTIMATION FOR ARBITRARY ARRAY GEOMETRIES USING A SINGLE NOISY SNAPSHOT

ICASSP 2019 Presentation

Anupama Govinda Raj and Prof. James. H. McClellan*

ECE, Georgia Institute of Technology

May 16, 2019
Outline

1. Introduction and Notation
2. Details of Proposed Method
3. Simulations
4. Conclusion
Outline

1. Introduction and Notation
2. Details of Proposed Method
3. Simulations
4. Conclusion
DOA Estimation Methods

Classical Methods
- Non adaptive: Conventional delay-sum beamformer (CBF)
- Data adaptive: MVDR, MUSIC, ESPRIT

Compressed Sensing (CS) based Sparse Methods
- On-grid sparse DOA estimation - has offgrid (discretization) problem
- Off-grid DOA methods
 - Fixed grid
 - Dynamic grid
- **Gridless method using super-resolution (SR) theory** [Candès and Fernandez-Granda 2014] **for arrays** [Xenaki and Gerstoft 2015]
 - Based on atomic norm or total variation (TV) norm
 - Uses convex optimization (LMI and SDP)
 - Only applicable for ULAs [Xenaki and Gerstoft 2015]
Objective of Proposed Research

- Develop search-free gridless super-resolution DOA method
 - To eliminate offgrid problem of CS
- Extend method to arbitrary array geometries
 - Non-uniform arrays
 - Random Planar 2-D arrays
 - Circular arrays
- Applicable for coherent sources, single snapshot case
Data Model for Arbitrary Array DOA Estimation

- M sensors, known sensor positions
- L sources with unknown azimuth DOAs $\theta = \{\theta_1, \theta_2 \ldots, \theta_L\}$
- Assumptions:
 - far-field, narrow band sources
 - unknown source amplitudes
 - unknown number of sources (L)
- Objective is to estimate θ, given the data at the sensors
- Array snapshot vector

$$y(t) = A(\theta)s(t) + n(t) \in \mathbb{C}^{M \times 1}$$

$s(t) = [s_1(t), s_2(t), \ldots, s_L(t)]^T \in \mathbb{C}^{L \times 1}$ is source amplitude vector

$n(t) = [n_1(t), n_2(t), \ldots, n_M(t)]^T \in \mathbb{C}^{M \times 1}$ is noise vector
Array manifold $A(\theta) \triangleq [a(\theta_1), \ldots, a(\theta_L)] \in \mathbb{C}^{M \times L}$

Steering vector $a(\theta_l)$ for the l-th source from direction θ_l

$$a_m(\theta_l) = e^{-j2\pi f \tau_m(\theta_l)} = e^{-j(2\pi/\lambda)u_{\theta_l}^T p_m}$$

f, λ: frequency, wavelength

$\tau_m(\theta_l) = u_{\theta_l}^T p_m / v$

delay at m-th sensor for l-th source

p_m: position vector of m-th sensor

u_{θ_l}: unit vector in source direction θ_l

v: wave propagation speed
Sparse DOA Estimation: Discrete vs Continuous

- DOA estimation as a sparse signal reconstruction problem

\[
\min_{x \in \mathbb{C}^K} \|x\|_1 \quad \text{s.t.} \quad \|y - A(\theta_D)x\|_2 \leq \epsilon
\]

\(x\) sparse

- \(A(\theta_D) \in \mathbb{C}^{M \times K}\): dictionary of steering vectors
- \(\theta_D = \{\theta : \theta = -\pi + 2\pi k/K, \; k = 1, \ldots, K\}\): discrete grid of angles

- Sparse DOA estimation over continuous domain

\[
\min_{x} \|x\|_A \quad \text{s.t.} \quad \|y - Sx\|_2 \leq \delta
\]

\[x(\theta) = \sum_{l=1}^{L} s_l \delta(\theta - \theta_l), \quad Sx = \int_{-\pi}^{\pi} a_m(\theta)x(\theta)d\theta, \quad m = 1, \ldots, M\]
Outline

1. Introduction and Notation

2. Details of Proposed Method

3. Simulations

4. Conclusion
Data Model in Continuous Angle Domain

- Source amplitude function in continuous angle domain

\[x(\theta) = \sum_{l=1}^{L} s_l \delta(\theta - \theta_l), \quad \text{with atomic norm } \| x \|_A = \sum_{l=1}^{L} |s_l| \]

- Array snapshot vector

\[y = Sx + n, \quad \text{where } y_m = n_m + \int_{-\pi}^{\pi} a_m(\theta)x(\theta)d\theta, \quad m = 1, \ldots, M \]

\(S(\theta) \) is the array manifold surface with \(m \)-th component \(a_m(\theta) \)

\[a_m(\theta) = e^{-j(2\pi/\lambda)u_0^T\mathbf{p}_m} = \exp\{-j2\pi(|\mathbf{p}_m|/\lambda)\cos(\theta - \angle\mathbf{p}_m)\} \]
Proposed Method: Primal and Dual Problems

Primal Problem

\[
\min_x \|x\|_A \quad \text{s.t.} \quad \|y - Sx\|_2 \leq \delta
\]

Dual Problem

\[
\max_{c \in \mathbb{C}^M} \Re\{c^H y\} - \delta\|c\|_2 \quad \text{s.t.} \quad \|S(\theta)^H c\|_\infty \leq 1
\]

- \(b(\theta) = S(\theta)^H c = \sum_{m=1}^{M} a^*_m(\theta)c_m\)
 - \(c\) is a vector of Lagrange multipliers (dual variables)
 - \(|b(\theta)| = 1\) for true source directions
- For ULA, \(b(\theta)\) is a polynomial in \(z = e^{-j(2\pi/\lambda)d \sin \theta}\)

\[
S(\theta)^H c = \sum_{m=1}^{M} c_m e^{-j(m-1)(2\pi/\lambda)d \sin \theta} = \sum_{m=1}^{M} c_m z^{(m-1)}
\]
For arbitrary arrays, $b(\theta)$ does not have a direct polynomial form.

Fourier Domain approach, motivated by [Rübsamen and Gershman 2009] also [Doron & Doron, 1994]

- $b(\theta) = S(\theta)^H c = \sum_{m=1}^M a_m^*(\theta) c_m$

- $a_m^*(\theta)$ periodic \Rightarrow $b(\theta)$ periodic \Rightarrow Fourier Series (FS)

- $b(\theta) = \sum_{k=-\infty}^{\infty} B_k e^{jk\theta}$, where $B_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} b(\theta) e^{-jk\theta} d\theta$

- $a_m^*(\theta)$ is smooth, bandlimited \Rightarrow $b(\theta)$ is bandlimited

- **Finite** Fourier Series ($2N + 1$ coeffs) $\quad b(\theta) = \sum_{k=-N}^{N} B_k e^{jk\theta}$

- $b(\theta) \rightarrow b(z) \bigg|_{z=e^{j\theta}}$ is the **dual polynomial**
Fourier Domain Representation of $a_m(\theta)$

- How to get \hat{B}_k's? $B_k = \sum_{m=1}^{M} \alpha_m[k] c_m$

- $\alpha_m[k]$ are FS coeffs of $a^*_m(\theta) = \exp\{j2\pi(|p_m|/\lambda)\cos(\theta - \angle p_m)\}$

- **DFT** is used to obtain finite FS of a bandlimited function
 - Compute $\hat{\alpha}_m[k]$ via P-point DFT; $P = 2N + 1$, $\Delta \theta = 2\pi/P$

 approximation $\hat{\alpha}_m[k] \approx \alpha_m[k]$

 $$\hat{\alpha}_m[k] = \frac{1}{P} \sum_{l=-N}^{N} a^*_m(l\Delta \theta)e^{-j(2\pi/P)lk}$$

- Now, $\hat{B}_k = \sum_{m=1}^{M} \hat{\alpha}_m[k] c_m$, so we have $b(\theta) \approx \sum_{k=-N}^{N} \hat{B}_k e^{jk\theta} \to \hat{b}(z)$,

 $$\begin{bmatrix} \hat{B}_{-N} & \hat{B}_{-(N-1)} & \ldots & \hat{B}_N \end{bmatrix}^T \triangleq h = G^H c,$$

 $G^H = [\hat{\alpha}_m[k]]_{P \times M}$; m-th column has FS coefficients of $a^*_m(\theta)$
Fourier Domain Bandwidth Approximation of $a_m(\theta)$

- Selection of P for accurate polynomial representation
 - FS bandwidth of $a_m(\theta) = \exp\left\{-j2\pi(|p_m|/\lambda)\cos(\theta - \angle p_m)\right\}$
 - Plot magnitude of $\hat{\alpha}_m[k]$ vs. $|p|/\lambda$

(a) DFT spectrum of $a^*_m(\theta)$ (20 log_{10}|\alpha_k| dB) as a function of k and $|p|/\lambda$,
(b) P vs. normalized distance $|p|/\lambda$ for different spectral cutoff levels (γ).

- Linear rule for P w.r.t distance $|p|$ of farthest sensor from reference

For $\gamma = -160$ dB, $P = 15.9|p|/\lambda + 27.03$
Semidefinite Programming and Source Recovery

- Dual Program to Semidefinite Program (SDP)

\[
\begin{align*}
\max_{c, H} & \Re \{c^H y\} - \delta \|c\|_2; \quad \text{s.t.} \quad \begin{bmatrix} H_{P \times P} & G_{P \times M}^H \end{bmatrix} \begin{bmatrix} c_{M \times 1} \end{bmatrix} \succeq 0, \\
\sum_{i=1}^{P-j} H_{i,i+j} & = \begin{cases} 1, & j = 0 \\
0, & j = 1, \ldots, P - 1. \end{cases}
\end{align*}
\]

SDP has \(n = P^2/2 + M\) variables. Worst case complexity \(O(n^3)\)

- Recover source DOAs \(\hat{\theta}\) from unit-circle roots of nonnegative poly.

\[
p(z) = 1 - |\hat{b}(z)|^2 = \sum_{k=-(P-1)}^{P-1} r_k z^k
\]

\(r_k = \sum_j h_j h^*_j \) are autocorrelation coeffs of \(h_* = G^H c_*\)

- Recover source amplitudes by least-squares

\[
\hat{s} = A(\hat{\theta})^\dagger y
\]
Algorithm: Super-Resolution DOA for Arbitrary Array

Input: Array snapshot vector $y \in \mathbb{C}^M$, wavelength λ, number of Fourier coeffs P

1. For the sensor positions, compute $G^H = [\hat{\alpha}_m[k]]_{P \times M}$ using the DFT to obtain the FS of the array manifold (OFF-LINE)
2. Estimate noise level, and then set δ
3. Using G^H and y as inputs, solve the SDP to find optimal c_*
4. Compute the optimal dual polynomial coefficients-vector h_*, using $h_* = G^H c_*$
5. Estimate DOAs $\hat{\theta}$ by finding the unit-circle roots of nonnegative polynomial $p(z)$
6. Eliminate extraneous zeros via ℓ_1 recovery
7. Recover source amplitudes \hat{s} by least squares
Running Time Examples

- The observed time complexity seems to grow as P^2
- SDP has $n = P^2/2 + M$ variables.
- Significantly less than the worst case complexity of $O(n^3)$

<table>
<thead>
<tr>
<th>Case</th>
<th>P</th>
<th>Radius</th>
<th>Time for SDP</th>
<th>Poly. rooting</th>
<th># Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>2λ</td>
<td>5.31 sec</td>
<td>0.04 sec</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>121</td>
<td>5.87λ</td>
<td>14.79 sec</td>
<td>0.15 sec</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>183</td>
<td>9.75λ</td>
<td>57.9 sec</td>
<td>0.37 sec</td>
<td>19</td>
</tr>
</tbody>
</table>

Intel core i7 processor, $M = 40$, Three sources
Outline

1. Introduction and Notation
2. Details of Proposed Method
3. Simulations
4. Conclusion
Simulations

- Simulations for Uniform Circular and Random Planar Arrays (Noise-free)

- Performance Evaluation using Success Probability (Noise-free)

- Simulations for Noisy Case
 - White and Colored Noise Examples
 - ℓ_1 Recovery Result
 - Performance Evaluation Vs. Signal to Noise Ratio (SNR)

 \[
 \text{SNR} = \frac{\text{Source Power}}{\text{Noise Power}} \quad \text{at each sensor}
 \]

- All Simulations use Coherent Sources and Single Snapshot
Simulation for Uniform Circular Array (UCA)

(a) Dual Polynomial

(b) Nonnegative Polynomial

(c) Zeros of $p(z)$

(d) CBF vs. Proposed

UCA with $r = 2\lambda$, $M = 40$, $P = 61$. Sources at -10.3°, 30.5°, 70.7°, magnitudes $5, 30, 7$. Noise-free case: Perfect Estimates for DOAs and Mags
Simulation for Random Planar Array (RPA)

(a) Random Planar Array (RPA)

(b) CBF vs. Proposed Method

Result for RPA with $M = 30$, $P = 61$. Farthest sensor at $r/\lambda \approx 2$.

Three sources at DOAs -65.1°, 37.5°, 50.7°, equal magnitudes.

Noise-free case: estimates of directions and magnitudes are perfect.
Performance Evaluation for Resolution

Success probability of \(M = 40 \) UCA (a) versus \(r/\lambda \) and \(P \), with fixed \(\Delta_{\text{min}} = 10^\circ \).

(b) versus minimum source separation \(\Delta_{\text{min}} \) and \(L \) with fixed \(r/\lambda = 1.59 \).

- **Success probability**
 - Fig. (a): 50 random trials for each \(P \) and \(r/\lambda \). Fixed \(\Delta_{\text{min}} = 10^\circ \)
 - \(L = 10 \) sources with random DOAs \(\sim \mathcal{U}(-\pi, \pi] \)
 - Success declared when all DOAs are estimated within 0.001° error
 - Fig. (b): Fixed radius \(r/\lambda = 1.59 \), \(P = 53 \), and 10 trials
Simulations for Noisy Case: Colored Noise Example

(a) noise spectrum \((1/f)\)

(b) Zeros of \(p(z)\)

(c) CBF vs. Proposed Method

UCA with \(r = 2\lambda, M = 40\) sensors, \(P = 63\). Two sources at \(40^\circ, 50^\circ\); SNR = 20 dB.
Simulations for Noisy Case: RPA, $M = 30$

Result for RPA with $M = 30$, $P = 63$, $\max |p| \approx 2\lambda$.

Two equal magnitude sources at 60° and 70°.

SNR = 20 dB. $\delta = 1.4e_n$.

Minimum sensor spacing = $\lambda/4$.

DOA RMSE = 0.8882°
Amplitude RMSE = 0.4693
Simulations for Noisy Case: RPA, $M = 40$

Result for RPA with $M = 40$, $P = 63$, max $|p| \approx 2\lambda$.

Two equal magnitude sources at 60° and 70°.

SNR = 20 dB. $\delta = 1.4e_n$.

Minimum sensor spacing = $\lambda/4$.

DOA RMSE = 0.5583°
Amplitude RMSE = 0.3652
Simulations for Noisy Case: ℓ_1 Recovery

Result for UCA with \(\text{radius} = 2\lambda, \ M = 40, \ P = 63. \ \delta = 1.4e_n. \)
Five sources with \(\text{SNR} = 5 \text{dB} \) at \(-10.7^\circ, 27.5^\circ, 40^\circ, 73.7^\circ \) and \(-151.1^\circ\)

- Extraneous roots from polynomial rooting
 - Need ℓ_1 recovery to remove unwanted roots
- Estimate amplitudes by least-squares

DOA RMSE = 0.5617°
Amplitude RMSE = 0.2016
Performance Evaluation vs. SNR

(a) Source Separation = 10°

(b) Source Separation = 30°

DOA accuracy vs. SNR for UCA with $r = 2\lambda$, $M = 30$, and $P = 63$.

50 trials, two sources at random DOAs in each trial.

Additive noise $\mathcal{CN}(0, \sigma)$ per sensor $\Rightarrow e_n = \mathbb{E}[\|n\|_2] = \sqrt{M}\sigma^2$
Outline

1. Introduction and Notation
2. Details of Proposed Method
3. Simulations
4. Conclusion
Conclusion

- Search-free gridless SR DOA method for arbitrary arrays using single noisy snapshot
 - Formulated problem as an atomic norm minimization
 - Fourier domain approach for polynomial representation of manifold
 - Finite SDP formulation for arbitrary arrays, solvable in polynomial time

- No strong source masking weak source problem, unlike CBF

- Applicable for coherent sources, single snapshot, and colored or white noise scenarios

- Larger impact: Applicable to generic data model involving periodic measurement functions, and to other applications.
Thank You!