Background Adaptation for Improved Listening Experience in Broadcasting

- Yan Tanga, Qingju Liub, Trevor Coxa, Bruno Fazendaa, Weewu Wangb

a Acoustics Research Centre, University of Salford, UK
b Centre for Vision, Speech and Signal Processing, University of Surrey, UK
Intelligibility issue in broadcast

• Factors causing low speech intelligibility [1]:
 • Background sound effects
 • Intrinsically unintelligible speech
 • Unfamiliar accents
 • Loud ambient noise

• Intelligibility enhancement [2-4] :
 • Reduced perceived quality of the modified speech [2]
 • Escalated annoyance when listening to modified speech.

How about adapting the background sound(s)?

• Assumption
 • Both speech and background sound(s) are separately accessible (OBA).
 • Adapting the background sound may be less intrusive to listeners.

• Applying modification to the background signal
 • Can maintain the background level for design or artistic purposes

• Spectral weighting [1]
 • Similar to post-filtering: computationally cheap
 • Learning optimal weightings is time-consuming
 • Need a fast implementation for online processing

[1] Tang & Cooke, 2018
Spectral weighting for background

• Adaptation: to reallocate the energy of the background, s, across 34 frequencies on the ERB scale.

$$s'(t) = k \cdot \sum_{f=1}^{F=34} s_f(t) \cdot 10^{W_f/20},$$

s': adapted s
k: scalar for renormalising the broadband signal energy
W_f: spectral weighting

• Problem: to seek for a set of optimal W
Factors affecting overall listening experience

• Perceptual guides:
 • Speech intelligibility: High-Energy Glimpse proportion (HEGP [1-3])
 • Overall audio quality: Perceptual Evaluation of Audio Quality (PEAQ [4])

• A linear combination of HEGP and PEAQ

 \[OM = k_{si} \cdot \text{HEGP} + k_{aq} \cdot \text{PEAQ}, \text{ w.r.t } k_{si} + k_{aq} = 1 \]

• When HEGP < 0.1, i.e. no intelligibility
 • Prioritising increasing intelligibility
 • $k_{aq} = 0$

• When HEGP ≈ 0.6, i.e. threshold of full intelligibility
 • Both intelligibility and quality affect listening experience
 • $k_{aq} = 0.7$

• When HEGP ≈ 0.7, i.e. more favourable SNR
 • Overall quality is dominant
 • $k_{aq} = 0.9$
Closed-loop optimisation for spectral weightings W

- Task: to learn a set of optimal W_f (in dB) for each speech-background pair at a specified SNR.

- Optimisation procedure [1]
 - Algorithm: Pattern Search with MATLAB implementation
 - Variables: a vector of 34 elements, representing W_f
 - Objective function: the linear combination of HEGP and PEAQ, OM

- But Closed-loop optimisation is slow; not applicable for real time processing

[1] Tang et al, 2018a
Neural network implementation

• A two-hidden-layer recurrent NN with backpropagation

• Input features:
 • 34 mean log-compressed speech spectra E_s^f and 34 noise spectra E_n^f
 • 34 mean band SNRs, i.e. $E_s^f - E_n^f$
 • A vector of 102 elements

• Grand-truth: 34 optimal weightings, W_f
 • Learnt from maximising the linear combination of HEGP and PEAQ, OM
Experiments

• NN Training data
 • 120 Harvard sentences sampled at 16 kHz; male talker
 • 6 background sounds:
 ✷ café noise (CAFE)
 ✷ female competing speech (CS)
 ✷ stadium crowd noise (CROWDS)
 ✷ a pop song (SONG)
 ✷ the same song with vocal being removed (SONG-VR)
 ✷ classic music (CLASSICAL)
 • SBRs: from -21 to 9 dB with steps of 3 dB
 • 7920 samples

• Test data
 • 300 sentences not appearing in training
 • SBRs: from -19.5 to 10.5 dB with steps of 3 dB
Results I

CROWDS
SNR = -21 dB

Spectral weighting (dB)

Frequency (kHz)

Ground truth
NN-estimation

SNR: 9 dB
SNR: -9 dB
SNR: 3 dB
SNR: -15 dB
SNR: -3 dB
SNR: -21 dB
Results II

CROWDS SNR = -21 dB

- ○ Ground truth
- ● NN-estimation

Spectral weighting (dB)

Frequency (kHz)

SONG SNR = -21 dB

Spectral weighting (dB)

Frequency (kHz)
- **Statically-weighted** leads to substantial HEGP gains at cost to the overall audio quality
- **Dynamically-weighted** shows more adaptive manner in preserving both intelligibility and audio quality
Conclusions

• Spectral weighting inspired by near-end intelligibility enhancement is applied to the background signal, in order to enhance speech intelligibility while preserving the overall audio quality.

• With an adaptive function which models the relationship between intelligibility and audio quality, the optimised spectral weightings balance the two factors while modifying the background signal.

• A pre-trained NN is able to estimate the optimal spectral weightings from easy-to-compute acoustic features.

• Perceptual listening experiments are needed for further validating the method.
Thank you!

This work was supported by the EPSRC Programme Grant S3A: Future Spatial Audio for an Immersive Listener Experience at Home (EP/L000539/1) and the BBC as part of the BBC Audio Research Partnership.