Abstract—Resistive switching memory technologies (RRAM) are seen by most of the scientific community as an enabler for Edge-level applications such as embedded deep Learning, AI or signal processing of audio and video signals. However, going beyond a “simple” replacement of eFlash in micro-controller and introducing RRAM inside the memory hierarchy is not a straightforward move. Indeed, integrating a RRAM technology inside the cache hierarchy requires higher endurance requirement than for eFlash replacement, and thus necessitates relaxed programming conditions. By doing so, the reliability bottleneck is moved from programming to the read operations (i.e., read margin is reduced and the risk of read failure is increased). Based on this observation, in this work, we propose to explore how Edge-level applications running on a RRAM-based Edge device could fail because of Bias Temperature Instability (BTI). BTI causes threshold voltage (Vt) degradation on the transistors along the memory WordLines (WL), leading to a reduction of the read margin along regularly used WLs. We thereby propose a 3-steps methodology consisting in (i) characterizing the RRAM bitcell and identifying beyond which Vt shift the read operation is going to fail, (ii) characterizing applications and extracting the memory traces. And (iii) running a long term BTI simulation to extract the actual Vt shift of the bitcells sharing the same array WordLine. Based on this, we show that for a 1T1R bitcell featuring a 250% High/Low Resistance State (HRS/LRS) ratio, read failures tend to happen after less than a month in the case of a constantly running convolution kernel. These simulations highlight the fact that transistor-level reliability can be critical for embedded RRAM and that specific workload aware simulation frameworks are required to assess their effects.

I. INTRODUCTION

With the arrival in the consumer market of edge AI systems running more and more complex applications such as deep neural networks, video/audio encoding and filtering or cryptography, the requirements in terms of energy efficiency and leakage power have evolved. Hence, emerging resistive non volatile memories came in as a promising solution as a simple replacement of eFlash in sub-28nm nodes [1]. In that context, 2-terminal RRAM like filamentary RRAM [5], [6] or Phase Change Memories [7] - PCM) enable higher endurance at the cost of smaller read margins (i.e. more complex read operations [8]). Thereby, while the reliability constraints are still high during the programming operations, the bottleneck tends to move towards the read operation which becomes extremely sensitive. While most of reliability studies explore the failure mechanisms of the RRAM device by itself [6], reliability of its selection transistor is usually not considered in reported publications. In this work, we propose to open the question of the selection transistor reliability and we chose to focus on the impact of Bias Temperature Instability [9], [10] (BTI)-induced threshold voltage (Vt) shift on the selection transistors inside 1Transistor-1RRAM memory arrays while running Edge-level applications. Along the memory array WordLines (WL), all the transistors are stressed in the same way, thereby inducing workload dependent Vt shift.

The main contributions of this work are the following:
- A bitcell-level analysis of the impact of BTI-induced Vt shift on the RRAM read margin.
- A WL-level memory traces framework simulating the evolution of BTI-induced Vt shift with Edge-level application patterns.
- An exploration of the effect of BTI-induced failures in memory. We show that for a 250% HRS/LRS ratio, while running a convolution kernel, first failures tend to happen from a few days to a few months of constant operation.

The remainder of the paper is organized as follows. Section II presents the background of the paper, presenting RRAM memory array organizations and BTI-induced Vt shift. Section III presents the simulation conditions and the simulation framework for Edge level applications considered in this work. Section IV presents the simulations results and discusses some potential solutions. Finally, Section V concludes the paper with a summary of the main findings of this work.

II. BACKGROUND

A. Resistive Memory Architectures

Resistive Random Access memories (RRAM) have been gaining popularity along the last 10 years as eFlash technologies became hard to co-integrate in advanced technology process [1]. In that context, 2-terminal RRAM like filamentary RRAM (ReRAM) [5], Phase Change Memories (PCM) [7] or Spin Transfer Torque Magnetic RRAM (STT-MRAM) [4] are now considered as serious industrially viable solutions.
In a nutshell, these technologies consist in the non-volatile resistance variation of an insulating material sandwiched between two metallic electrodes. While each technology is based on drastically different physical phenomenons and exhibit different behaviors, from a functional point of view, Single Level Cells (SLC) RRAM can be modeled as a two resistance states device, assuming that the programming operation is managed adequately. In that context, the two resistance states can be assumed to be a normal distribution with a given dispersion which depends on the technology characteristics and the programming conditions.

From the architectural point of view, while crosspoint architecture is gaining a lot of interest in the last years, it introduces deep technology, integration, physical design, circuit and reliability constraints [11], [12] targeting it towards standalone memory chips [13]. Thereby, most of the viable solutions reported in the last years are integrating RRAM as part of a 1T1R array architecture [14], [3], [15], [16]. In that context, reliability of the access transistor has to be analysed, modelled and optimized by the designers and the foundry.

B. BTI Induced Aging

Among the various sources of failure, soft reliability issues, such as Bias Temperature Instability (BTI), are under high interest in the community [10] as they tend to exhibit highly application dependent degradation [17]. BTI occurs when a transistor gate is forward biased: Positive BTI (PBTI) for n-type and negative (NBTI) for p-type transistors. BTI occurs at the oxide-channel interface, and is caused by the creation of charge trapping defects. Such traps can then catch or release charges following a stochastic process. Over time, two kind of situations are possible: (i) The transistor is stressed, inducing the creation of traps, thereby causing the transistor V_t to shift toward higher values. (ii) The transistor is unbiased, inducing a release of trapped charges, thereby causing the transistor V_t to shift towards lower values. We use the defect-centric model proposed in [9] to determine the evolution of the V_t along with regards to the considered workload.

III. Simulation Framework

In this work, we propose an innovative simulation framework that can give insights on the effect of BTI-induced threshold voltage (V_t) drift on RRAM memory architectures when complex edge AI applications are executed. We considered three simulation steps which we iterate among them. First, for a given bitcell and RRAM technology, we extract the read margin versus the V_t shift. Then, we characterize Edge level applications and extract memory traces. Finally, we identify the most used memory array WordLine (WL) and we calculate the V_t shift occurring on the access transistors based on memory access patterns from step 2. Based on the failure characterization from step 1 we can determine the potential lifetime of the architecture running a given application.

A. Bitcell Level V_t Shift

In order to assess the read margin, we consider a 1T1R bitcell and run monte-carlo simulations considering RRAM and CMOS variability. Then, we introduce V_t shift by progressively reducing the WL voltage (up to 50mV).

In this work, we consider a low HRS-LRS window (5k-12.5k - corresponding to a 250% ratio) case which corresponds to STT-MRAM regular windows or low programming current PCM or ReRAM technologies [4], [7], [5], [6]. We then introduce a 10% (5% respectively) variability on the HRS (LRS respectively). We consider a 28nm bulk CMOS industrial PDK and run simulations at 20°C (morever an increase in temperature would make the situation worse [3]).

B. Memory Traces Extraction

Application characterization is performed through the extraction of memory traces from real edge level application such as signal processing (filtering, compression, convolutional Neural Networks, machine learning as we did in [18]). We thereby apply a methodology analogous to [18] enabling the extraction of memory traces from different edge level applications. For the sake of concept demonstration and in order to open the discussion and highlight potential issues, in this work we focus on a single convolution kernel (widely used in recent machine learning algorithms [19], [20]) involving 3x3 and 30x30 random matrix.

C. Application Level BTI Extraction

We then translate the memory traces extracted in section III-B into signals understandable by the BTI simulator [9]. In that sense, we consider only the addresses corresponding to the most used WL and then translate each read access into a 50ns 0.8V pulse, each write access into a 50ns 1.5V pulse. When no operation is performed, on that WL, we consider a relaxation period equivalent to the amount of operations performed on the other WLs. This way, assuming that each memory access is following the previous, we can extract an accurate application-aware behavior of the access transistors BTI-induced V_t shift.

IV. Application Aware Aging

A. BTI impact on Read Margin

The first step of the proposed methodology is to assess the effect of BTI-induced V_t shift at the bitcell level. Hence, we simulate 1T1R bitcells and extract the corresponding read current (assuming a current-based read sense amplifier). Figure 1 shows the read current distributions in LRS and in HRS of the considered bitcell at 20°C. When introducing BTI-induced V_t shift, the distributions shift toward lower read current. It can be noted that the LRS read current tends to shift more than the HRS read current, leading to a point where distribution tails overlap. This unbalanced shift is due to the fact that in LRS, the access transistor Vds is higher, thus, leading to more variations in the Ids current. Such distribution tails overlap will lead to read failures. Read margin with no V_t shift is shown in black (5μA) and it becomes negative (in red) when V_t shift is introduced. Thereby, we define the read margin as the difference of current between the LRS and HRS
current tails and extract it for 250\% and 280\% HRS/LRS ratio at 20°C. As shown in figure 2, for a 250\% ratio, a 15mV Vt shift before failure while a 280\% ratio requires 40mV of shift at 20°C.

B. BTI impact on Application

In this section we consider the application traces from Section III-C and explore their effect at the application level. Following up the methodology described in Section III, we run the selected convolution kernel and observe its effect over time. An interesting feature of the simulation framework we propose, and that has not been considered in any of the previously reported works, is the support for several voltages over the device lifetime. As a matter of fact, we consider a relaxation voltage (0V), a read voltage (0.8V), a programming voltage (1.5V) and stress the transistor accordingly following the application pattern. In that sense, as Figure 3 shows, over time the Vt shift tends to reach 3 different states: (i) a relaxed state in which the charges are de-trapped; (ii) a read stress state in which only a portion of previously created traps can be charged; and (iii) a write stress state in which all the available traps are getting occupied. Consequently, the value of each of these states is controlled by: the application activity factor, the read voltage value, the write voltage value and the temperature. Overall, as it can be seen in figure III, a higher temperature eases trap creation, in turn leading to a higher Vt shift.

As a BTI-induced Vt shift can lead to potentially extremely long simulations (i.e., a second of BTI simulation using the model from [9] takes a few tens of minutes in a high end Intel server), we consider a linear (and pessimistic) approximation for the extrapolation of BTI-induced Vt shift. Based on this extrapolation, we show that during read operation, a 20mV shift can appear in less than a month of stress. On the other hand, during write operation, a 80mV Vt shift can be reached from 1 (at 80°C) to 12 months (at 20°C) after the initial stress. Such shift will induce read failures, as it was introduced Figure 2 and potential write failures (out of the scope of this paper but briefly discussed at the end of this section). It could be concluded that such effect might make a edge level completely unusable within a month.

Beyond temperature corners, it must be noted that trap creation, is a completely random process that must be considered from a statistical perspective [10], [9]. Figure 4 shows the results of 100 runs of a 1 second BTI-induced Vt shift running the previously introduced convolution kernel on the most used WL of the RRAM array. As traps might get created completely randomly among the gate oxide, it is mandatory to consider such exploration when looking into BTI-induced stress.
Finally, a long term exploration using a defect-centric BTI prediction model and a fast extrapolation methodology to identify the lifetime of a given RRAM architecture running a given application. In that context, we show with our framework that a 250% HRS/LRS ratio RRAM integrated with a regular 28nm industrial CMOS transistor starts to exhibit read failure events after less than a month of operation while running a convolution kernel. Overall, in this work, we highlight (i) the need for workload aware simulations when considering RRAM technologies and (ii) the fact that CMOS reliability has to be considered when designing 1T1R bitcells arrays. Such considerations have to be taken into account when dealing with low-window RRAM technologies in the context of next-generation edge AI systems.

ACKNOWLEDGMENT

This work has been supported by the ERC Consolidator Grant COMPUSAPIEN (GA No. 725657), the EC H2020 WiPLASH (GA No. 863337) project, and the EC H2020 RECIPE (GA No. 801137) project.

REFERENCES

[8] L. Wei et al. 13.3 a 7mb stt-mram in 22fint technology with 4ns read sensing time at 0.9v using write-verify-write scheme and offset-cancellation sensing technique. In IEEE ISSCC, 2019.