

RATE-DISTORTION OPTIMIZED ILLUMINATION ESTIMATION FOR WAVELET-BASED VIDEO CODING

Maryam Haghighat, Reji Mathew, Aous Naman, Sean Young and David Taubman University of New South Wales (UNSW), Sydney, Australia

2018 IEEE International Conference on Acoustics, Speech and Signal Processing 15–20 April 2018 • Calgary, Alberta, Canada

Temporal Haar transform

Introduction

Motion Compensated Temporal Haar transform

Application: Low frame rate surveillance video.

Indoor images

 $f_0[x]$

Block-based method

Block-based illumination compensated frame

- Illumination compensation is considered in H.264 and HEVC standards in the form of weighted prediction to improve coding efficiency.
- Illumination change is usually modelled by a scale and an offset and is assumed to be constant within a block which can produce block boundary artefacts!

Problems we need to handle:

Incorporating the illumination compensation into wavelet-based temporal transformations.

Estimation of the illumination field; developing a framework to decompose a sequence of frames into illumination variation fields and texture such that is efficient for compression.

- 3
- Applying a highly scalable, embedded compression framework with R-D optimal termination points for frames and illumination information.

Lifting steps :

UNSW

Proposed Method

Problems we need to handle:

Incorporating the illumination information to wavelet-based temporal transformations.

Estimation of the illumination field; developing a framework to decompose a sequence of frames into illumination variation fields and texture such that is efficient for compression.

Applying a highly scalable, embedded compression framework with R-D optimal termination points for frames and illumination information.

Mesh-based Illumination Modelling

Affine mesh

Affine interpolation

- 1. The illumination representation is limited to the same grid size over the whole frame.
- 2. The optimal mesh size is discovered by noting the corresponding R-D performance.
- 3. Coding efficiency is achieved using a coarse mesh or high regularization parameter.

In next step:

- Illumination is estimated based upon the total rate-distortion cost of LIAT subband frames.
- 2. Smoothness of illumination field is discovered automatically such that rate-distortion is minimized.

 \succ LIAT subband frames are all a function of α and subject to coding

Problem: Find α such that total coding cost is minimized

 \succ We model the R-D cost (J) using the high rate model:

$$J = D + \lambda L$$

$$D = \sum_{s,n} D_{s,n} = \sum_{s,n} |y_{s,n}|^2 g_{s,n} e^{-aL_{s,n}}$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

$$L = \sum_{s,n} L_{s,n} = \sum_{s,n} (L_{s,n} + L_{s,n}^{\sigma})$$

- $y_{s,n}$ transformed coefficient of the LIAT subband s at position n.
- $g_{s,n}$ product of the spatial and temporal synthesis gain.
- > Cost function $J(y_{s,n})$ at R-D optimal operation point is:

$$J(y_{s,n}) = \begin{cases} g_{s,n} |y_{s,n}|^2 & \text{if } |y_{s,n}|^2 \le \frac{\lambda}{ag_{s,n}} \\ \frac{\lambda}{a} + \frac{\lambda}{a} \ln\left(\frac{g_{s,n} |y_{s,n}|^2}{\lambda/a}\right) + \lambda L_{s,n}^{\sigma} & \text{otherwise} \end{cases}$$

Quadratic-log function

R-D Optimized Illumination Estimation in LIAT Framework

$$\underset{\alpha}{\operatorname{argmin}} J = J_{\alpha} + J_{h(\alpha)} + J_{l(\alpha)}$$

$$\underset{\alpha}{\operatorname{argmin}} C(\alpha) = \|m_{\alpha}y_{\alpha}\|_{1} + \|m_{h}y_{h(\alpha)}\|_{1} + \|m_{l}y_{l(\alpha)}\|_{1}$$

$$\underset{\alpha}{\longrightarrow} m_{s,n} = \frac{\lambda/a + \lambda L_{s,n}^{\sigma}}{\sqrt{\frac{\lambda}{ag_{s,n}}}}$$
Slope of ℓ_{1} function for each coefficient

- ✓ We solve the optimization problem using ADMM (alternating direction method of multipliers)
- We can interpret our compression inspired convex formulation as a way to effectively distribute the information in a sequence between multiplicative illumination terms and non-multiplicative residual terms.

Problems we need to handle:

Incorporate the illumination information to wavelet-based temporal transformations.

Estimation of the illumination field; developing a framework to decompose a sequence of frames into illumination variation fields and texture such that is efficient for compression.

Applying a highly scalable, embedded compression framework with R-D optimal termination points for frames and illumination information.

 The rate-allocation problem is to find the optimal truncation points in Embedded Block Coding with Optimized Truncation (EBCOT) so as to minimize overall distortion s.t. an overall bit-rate constraint:

min $J(\lambda_j) = D(\lambda_j) + \lambda_j \sum_s R_s(\lambda_j)$

 λ_j = Lagrangian multiplier associated with the quality layer *j*.

 Using a linearized distortion model, we achieve a R-D optimal bit allocation through some gain factors which reflect how the error in each LIAT subband spreads in the final reconstructed frames.

Results

UNSW

(b) α , R-D optimized

(c) α , mesh size= 16

(d) α , mesh size= 64

Results

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

UNSW

(b) α , R-D optimized

(c) α , mesh size= 16

(d) α , mesh size= 64

18

Results for two temporal levels of LIAT

Results

Results for two temporal levels of LIAT

20

Thanks for your attention!

Questions?

Contact: maryam.haghighat@unsw.edu.au