2. Emotion recognition in conversations

Each dataset has a number of conversations. Each conversation has a number of utterances each of which has an emotional label, e.g., happy, angry, sad, neutral.

3. Our approach

- A learnable frontend used for audio feature extraction
- Effective context addition using self-attention with Bi-GRU network
- Multimodal transformers used for fusion of modalities
- Model trained in a hierarchical manner

4. Proposed Model

- LEAF-CNN training results in emotionally discriminative audio features
- BERT-BiGRU training results in emotionally discriminative text features
- LEAF-CNN and BERT-BiGRU networks are frozen

5. Audio feature extraction

- Each blue block represents a CNN filter with batch normalisation and ReLU activation
- LEAF-CNN training results in emotionally discriminative audio features

6. Text feature extraction

- BERT-BiGRU training results in emotionally discriminative text features
- BERT-base pre-trained model is not frozen during this training

7. Multi-utterance self-attention

- Separate BiGRU networks used for text and audio for adding context
- Self-attention employed across utterances for better context modelling

8. Dataset

- IEMOCAP has 151 recordings - divided into 5 sessions
- Each utterance is labeled one of the four categories - happy, angry, sad and neutral

9. Results

- Common test settings - CV5 - 5-fold cross validation, CV10 - 10 fold cross validation, Session 5 as test

10. Results with ASR transcripts

- Provided transcripts replaced by Google speech-to-text (42% WER)
- Models trained with provided transcripts, tested with ASR transcripts

References

- Wu et al. "Emotion recognition by fusing time synchronous and time asynchronous representations," ICASSP 2019