Columns of gene expression matrix are highly sparse in the DCT domain. Hence, we propose to recover missing data column-wise, i.e., by

\[\min_{\mathbf{x}_i} \max_w \left(\| \mathbf{x}_i - \hat{\mathbf{x}} \|_2^2 + \lambda_2 \mathbf{w}^T \mathbf{A} \mathbf{x}_i \right) \]

where \(\mathbf{w}_i \) is an auxiliary vector such that

\[\| \mathbf{x}_i \|_1 = \max_{\mathbf{w}_i} \left(\mathbf{w}_i^T \mathbf{x}_i \right) \]

TV denoising problem is minimized using iterative clipping algorithm with update equations as given in algorithm where,

\[\mathbf{w}(0) = 0 \text{ and } \alpha = \max \text{eig}(\mathbf{A}^T \mathbf{A}) \]

Algorithm

1. **Stage-1 - Matrix Recovery**
 Input: \(Y \) (Input incomplete matrix), DCT matrix \(\mathbf{D} \)
 for loop from \(i = 1, \ldots, n \)
 1. Calculate \(\hat{\mathbf{x}}_i \) for all \(i \) using \(\mathbf{y}_i \)
 2. while converge:
 \(\mathbf{z}_i \leftarrow \text{soft} \left(\mathbf{z}_i + \frac{1}{\lambda_2} (\mathbf{D}^T \mathbf{D})^{-1} (\mathbf{y}_i - \hat{\mathbf{x}}_i \mathbf{D}^T) \right) \)
 3. end while
 4. \(\hat{\mathbf{x}}_i \leftarrow \mathbf{D} \mathbf{z}_i \)
 5. end for
 6. Obtain \(\mathbf{X} \) from \(\hat{\mathbf{x}}_i \)
 7. Output: \(\mathbf{X} \) (Recovered Matrix)

2. **Stage-2 - Denoising**
 Input: \(X/\text{Noisy matrix} \), \(\Lambda \) (Difference Operator)
 for loop from \(i = 1, \ldots, n \)
 1. while converge:
 \(\mathbf{x}_i \leftarrow \text{clip} \left(\mathbf{x}_i + \Lambda \mathbf{w}_i \right) \)
 2. end while
 3. Obtain \(\mathbf{X} \) from \(\mathbf{x}_i \)
 4. Output: \(\mathbf{X} \) (Recovered Matrix)

Conclusion

- In this study, we have presented novel TV-DCT method that is a 2-stage matrix imputation method and we have investigated the performance of our proposed method at low as well as high observability of data.
- The comparative performance of TV-DCT method is observed to be superior to three state-of-the-art matrix completion methods in terms of NRMSE and classification accuracy.

References

Acknowledgements

Akanksha would like to thank UGC, Govt. of India for the UGC-JRF. We also acknowledge the funding support (Grant: EMR/2016/06/183 and DST/1/CPS/PSI-Individual/2018/2/WDG) from DST, Govt. of India.