
    If the measurements are contaminated with the bounded 
noise,             , then with probability at least 1-O(N-α+1), the 
solution X to problem (5) satisfies    

when

where C, C1,  and C2 are constant. Cα is a constant defined for 
α>1.
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Introduction Main Theorems

Conclusion

• Sparse Recovery

• Blind Demodulation

 -  The measurements undergo an additional modulation 
process. Recover the unknown, diagonal modulation 
matrix, D, is referred to as blind demodulation.

• Sparse Recovery and Non-stationary Blind Demodulation

• Subspace Assumption

• When there is no noise, we solve the following equality 
constrained, block L1 norm optimization problem.

• When the measurements are contaminated with bounded 
noise, we solve the inequality constrained, block L1 norm 
optimization problem.

• Introduce the general sparse recovery and non-stationary 
blind demodulation signal model.

• Propose to solve the model via the constrained block L1 
norm optimization problem. 

• Derive the near optimal, sufficient sample complexity for 
success recovery in the noiseless case and bound the 
recovery error in the noisy case.

SIgnals and NEtworks

 -  Recover the unknown, sparse signal c from its low 
dimension measurements, y. The dictionary matrix A is a 
known, fat matrix. There could be more than one solution.

• In this paper, we consider a general sparse recovery and 
blind demodulation model. Different from the ones in the 
literature, in our general model, each dictionary atom 
undergoes a distinct modulation process; we refer to this 
as non-stationary modulation.

• Applications: Blind super-resolution, self-calibration, etc.

 -  aj is the j-th column of the known dictionary matrix A.
 -  Dj is the modulation matrix of the j-th dictionary atom.
 -  cj is the j-th entry of the unknown sparse vector c.
 -  n is the unknown additive noise.

• Lifting Technique 

    Consider the observation model in equation (1), assume 
that n=0, at most J(< M) coefficients c j are nonzero, and 
furthermore assume that the nonzero coefficients cj are real-
valued and positive. Suppose that each modulation matrix Dj 
satisfies the subspace constraint (2), where BHB = IK and each 
hj has unit norm.
    Then the solution X to problem (4) is the ground truth 
solution X0—which means that c j, h j, and D j can all be 
successfully recovered for each j —with probability at least 1-
O(N-α+1), if A is a real, random Gaussian matrix and

Here Cα is a constant defined for α>1 and the coherence 
parameter
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 -  B in CNxK is the known subspace matrix.
 -  hj is the unknown coefficient vector.
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Theorem I (Noiseless Case)

Theorem II (Noisy Case)

(3)

The relation between the subspace 
dimension of the modulation matrix, 
K, and the number of committed 
atoms, J, in terms of the success 
recovery rate.

The nearly linear relation between 
the dimension of the observed 
s i g n a l ,  N ,  a n d  t h e  n u mb e r  o f 
committed atoms, J, in terms of the 
success recovery rate.

The nearly linear relation between 
the dimension of the observed 
s i g n a l ,  N ,  a n d  t h e  s u b s p a c e 
d imension ,  K ,  in  terms of  the 
success recovery rate.

The relation between the relative error (dB) 
and noise to signal ratio (dB). The blue 
horizontal sticks and red plus sign indicate 
the range of the standard deviation and the 
meanof the relative error (dB) given a 
specific noise to signal ratio (dB). The 
dashed line shows the theoretical error 
bound from Theorem II.
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