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Introduction

e Motion used to be main cue for video
segmentation.

e Current state of the art uses deep networks that
do not consider motion / dynamics in video.

e The relatively few attempts that were made to
incorporate temporal data into deep networks did
not result in a consistent and significant
improvement over single image segmentation.

e Using recurrent architectures is shown to be
effective for data streams. E.g. text
classification, speech synthesis and translation.

e Regular recurrent architectures are not practical
for image processing.

o They are fully connected

o They do not preserve spatial connectivity.

We propose a recurrent fully convolutional network
that is able to process a video stream online and
produce segmentation using both the current image
information and the implicit observed dynamics of
the sequence.

Overview

e We embed a fully convolutional network inside a
convolutional gated recurrent unit. Our network
takes in a sliding window of images and produces a
segmentation corresponding to the last image in it.

e EFach image is processed by the FCN network. Its
output along with the hidden state are convolved
with the the weights and produce gates weights and

next hidden state.
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Overview of Convolutional Gated Reccurrent FCN Method for Video
Segmentation

e Our original
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Synthia, CityScapes,
AR-Drone collected sequences.
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Sky | Building | Road | Sidewalk | Vegetation | Car | Pedestrian
FC-Dilated 46.7 86.3 69.1 87.8 63.7 60.8 63.6 214
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FC-VGG vs RFC-VGG Architecture for Segmentation.
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Moving MNIST, SegTrackV2 and

DAVIS.
Precision | Recall | F-measure IoU
SegTrack V2 FC-VGG 0.7759 0.6810 0.7254 0.7646
RFC-VGG 0.8325 0.7280 0.7767 0.8012
DAVIS FC-VGG 0.6834 0.5454 0.6066 0.6836
RFC-VGG 0.7233 0.5586 0.6304 0.6984

RFCN

Qualitative comparison between FC-VGG(top) and RFC-VGG(bottom)
on CamVid and Synthia.

FCN | RFCN

Synthia | 0.755 | 0.812

ARDrone | 0.857 | 0.871

Qualitative comparison on AR-Drone.

network. On average 5%.
e Different type of recurrent units were tested
o Conventional gated
improve the results over the baseline.
practical for small images.

o The Convolution Recurrent Units perform better.

o Convolutional GRU is the winner.
e Different methods for training were tested.
o ADADELTA is the best optimizer.

RFCN give a consistent improvement over its baseline

recurrent units can still
Only

o End-to-end training does better than stage by

stage training.

e More convolutional layers added to baseline to verify

the source of improvement.
o These addition did not help or
performance worse.

made the

o Therefore improvement is from using temporal

data.

Conclusion

e |n this paper, we presented a novel approach to

incorporating temporal information for video
segmentation.

We tested the method on both synthesized and real
data. We showed that by having a recurrent layer
after either probability map or feature map can

improve the performance.




