Abstract

Introducion

Visual Odometry (VO) System includes three main categories:
- Feature-based Approaches: ORB-SLAM
- Direct Methods: LSD-SLAM
- Semi-direct Methods: SVO

Motivation

- Propose a novel semi-direct VO framework for MAVs using fixed maps to achieve improved motion estimation results.
- Reduce the storage of keyframes for the VO framework.
- There is no constraint on the orientation of the fixed camera.

Proposed Method

The Pipeline of Proposed Method

Step 1: Fixed Map Generation

We build a fixed map to replace the incremental map used in previous works using the keyframe and the assist-frame only.
- Feature Extraction
- Feature Tracking
- Feature Matching
- Fixed Map Generation Based on Robust Features

Step 2: Motion Estimation Based on Semi-direct Method

We use sparse model-based image alignment, feature alignment to recover initial camera motion.
- Image Alignment And Feature Alignment
- Minimizing The Intensity Residuals Between Adjacent Frames

Proposed Method

Step 3: Pose and Structure Optimization

In this step, the camera pose and the structure (3D points) are optimized to minimize the reprojection error (motion-only BA problem).

Step 4: Relocalization

- Feature Tracking Quality
- Overlap Between The Reference Frames And The Current Frame

If one of these two numbers mentioned above is less than a given threshold, we determine the current position of MAV using its previous position and select the next frame as a keyframe. Then, we set new reference position at each keyframe.

Experiments and Results

EuRoC Dataset

- We run our algorithm on the EuRoC dataset and the average position/rotation estimation error of SVO and FSVO is 0.0783 m/0.0262 rad and 0.0554 m/0.0223 rad, respectively.

KITTI Dataset

- We run our algorithm on the KITTI dataset and the average position/rotation estimation error of SVO and FSVO is 0.0996 m/0.0711 rad and 0.0662 m/0.0464 rad, respectively.

Conclusion

- We propose a semi-direct VO framework using fixed maps.
- We propose a new keyframe selection criterion and a relocalization approach.
- Experimental results on the EuRoC and KITTI datasets show that it is more accurate and robust than the SVO algorithm.

Reference


Any Questions?
zihengfu92128@gmail.com