A data hiding scheme developed for encrypted RGB images, derived from the work of Wu et al.:

- **Original features:**
 - data insertion in R and B using G as a reference;
 - mean based prediction;

Encryption:
- for each color channel, XOR with a pseudorandom sequence generated by an encryption key.

Data insertion:
- divide the encrypted R and B pixels into three sets:
 - α pixels are processed in stage 1, β pixels in stage 2;
 - select groups of pixels based on a data hiding key;
 - embed bit b by flipping the t bit plane of a group (joint method)
 - or replace the t bit plane group parity value with b (separate method).

Encryption & Data insertion

- **Decryption & Data extraction**
 - **Decryption**:
 - XOR with the bitstream sequence used for encryption.
 - **Data extraction**:
 - divide the pixels into α, β and γ;
 - use the data hiding key to reform the α pixel groups;
 - compute U' and V' using the decrypted image:

 $$U' = R' - G$$
 $$V' = B' - G$$

 - flip the t bit plane of each α group, obtaining R'' and G'';
 - compute U'' and V'':

 $$U'' = R'' - G$$
 $$V'' = B'' - G$$

 - predict the α pixels in U and V (based on the y pixels):

 $$I_U = \frac{C_{U1} + C_{U2} + C_{U3} + C_{U4}}{4}$$
 $$I_V = \frac{C_{V1} + C_{V2} + C_{V3} + C_{V4}}{4}$$

 - for each group, select between U' and U''/V' and V'';
 - original pixels should have smaller prediction errors than their flipped counterparts;
 - repeat the process for the β groups;

Conclusions

- a more efficient data hiding scheme that exploits the correlation between color channel;
- negligible increase in complexity;
- significant gain in performance on the Kodak set.