Introduction

- Depth map estimation plays an important role in many applications, such as navigation, tracking, and 3D reconstruction.
- Most depth estimation methods are based on perspective cameras and use *epipolar lines* to accelerate (point) feature matching.
- This paper aims to estimate *epipolar curves* for fisheye cameras, which will be beneficial to the depth estimation because of the wider field-of-view (FOV) of a fisheye camera.

Methods

1. Procedure of The Proposed Method

The proposed procedure of automatic derivation of epipolar curves for fisheye cameras can be summarized as follows (see Fig. 1):

Step	1: Project each 3D reference point from
	the two camera centers to two points on
	the auxiliary screen (flat-panel display).

- Step 2: Connect the above two projected points with a line on the screen.
- Step 3: Repeat Steps 1 and 2 to establish multiple lines on the screen.
- Step 4: Find the intersection of lines obtained in Step 3 and identify its image as epipole in each camera view.
- Step 5: Identify images of lines derived in Step 3 as *epipolar curves* (*e-curves*) in each camera view.
- Step 6: If necessary, additional *e-curves* can be obtained by generating more lines passing through the above intersection.

AUTOMATIC GENERATION OF EPIPOLAR CURVES

Ardian Umam, Yi-Yu Hsieh, Jiwa Malem Marsya, Jen-Hui Chuang Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan

Fig. 1: System setup of the proposed method

2. Projections in Step 1

- A special circular pattern (Fig. 2 left) is used to represent a 3D reference point.
- Template matching is employed to locate its position in the fisheye image using a mask (Fig. 2 right) by minimizing

Fig. 2: (left) circular patter, (right) mask

□ Identified 3D reference point in the fisheye image can then be projected into the screen of the auxiliary display using binary search.

3. Estimating the Intersection

□ For *n* lines obtained in Step 3, with each line represented by $a_i x + b_i y = c_i$, their intersection can be estimated by the least squares solution

$$\begin{bmatrix} x \\ y \end{bmatrix} = (A^T A)^{-1} A^T B,$$

with $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & a_n \end{bmatrix}; B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

4. Performance Evaluation

> Three different camera setups are investigated.

Table I: Different camera setups							
Camera	Camera height (cm)		Screen (ci	depth m)	Stereo baseline		
setup	Left	Right	Left	Right	(cm)		
1	44	44	47	47	24.5		
2	40	44	47	47	24.5		
3	44	44	47	51	24.5		

Accuracy evaluation for epipoles: using selected subsets of ten 3D reference points. **Accuracy evaluation for E-curves:** using 100 equally spaced 3D reference points w. r. t. 10 corresponding *e-curves* (see Figs. 3 and 4).

 \checkmark Mean error (in pixels) is calculated from both camera views for each camera setup.

Experimental Results

Table 2: Accuracy evaluation for epipoles

Cam	No of rof		Error (pixel)		Intersection	
setup	points	Distance	Mean	Std.	found in Step 4	
1	2 points	Close	4.36	0.70	(-17574, 641)	
	2 points	Far	1.06	0.67	(-36857,354)	
	4 points	Far	1.05	0.61	(-34509, 310)	
	6 points	Far	1.10	0.66	(-37300, 221)	
2	2 points	Close	3.25	0.72	(-16675, 3549)	
	2 points	Far	1.06	0.74	(-37668, 4742)	
	4 points	Far	1.16	0.68	(-34969, 4558)	
	6 points	Far	1.11	0.78	(-38636, 6756)	
3	2 points	Close	1.00	0.84	(-2908, 467)	
	2 points	Far	0.91	0.82	(-2832, 455)	
	4 points	Far	0.87	0.85	(-2850, 462)	
	6 points	Far	0.98	0.87	(-2860, 472)	

Table 3. Accuracy evaluation for epipolar curves

A dditi e re e l	Camera setup	Error (pixel)				
Additional		Mean (or	ne view)	Mean	Std.	
meatment		Left	Right	(overall)	(overall)	
	1	1.09	1.02	1.06	0.65	
-	2	1.29	1.35	1.32	0.73	
	3	1.07	1.07	1.07	0.73	
Curve	1	1.66	1.71	1.68	0.77	
fitting	2	1.75	1.95	1.85	0.78	
nung	3	1.78	1.78	1.78	0.75	

Fig. 5: Generated e-curves in some real world views. Red and yellow arrows show point correspondence and camera view that cannot be seen from the other camera, respectively.

Conclusion

• A novel and effective approach is proposed for automatic generation of epipolar curves, wherein reasonably accurate results can be obtained with an auxiliary flat-panel display.