A New Backdoor Attack in CNNs by Training Set Corruption Without Label Poisoning

26th IEEE International Conference on Image Processing (ICIP)
TAIPEI, TAIWAN

Mauro Barni, Kassem Kallas and Benedetta Tondi
Outline

• Motivation

• What is a Backdoor attack and why?

• Backdoor attack requirements

• How our Backdoor attack works?

• Experimental Setup

• Experimental results
Motivation

• Backdoor attacks are serious threats to deep learning

The backdoor is activated only by properly crafted inputs.
Motivation

• Can be done in two ways: manipulating the network parameters or poisoning the training set

• Backdoor attacks can cause generic or targeted misclassification

• In this work we focus on poisoning the training set
How Backdoor attacks has been done so far?

• Most attacks consider the model fully or partially known to the attacker

• The focus was generic misclassification and it becomes targeted misclassification

• Attacks apply label poisoning: assign the attacked samples a specific label
Backdoor attack requirements

• **REQ1**: Must not impair training: the model should continue to work normally in the absence of the backdoor

• **REQ2**: Should induce error at testing time: when a backdoor sample is injected, the model should start making mistakes

• **REQ3**: The backdoor should be as stealthy as possible even when the trainer investigate the training set
 ✓ Label poisoning put its stealthiness at risk → it can be discovered if checked because they’re assigned different labels
Label poisoning

- Classify a cat as a dog: training
Label poisoning

- Classify a cat as a dog: testing

Desired behavior on inputs with backdoor triggering signals: ALL DOGS
Label poisoning

- Classify a cat as a dog: training

- If you have yet another class, you need different backdoor
No Label poisoning

- Classify a cat as a dog: training
No Label poisoning

• Classify a cat as a dog: testing

Desired behavior on inputs with backdoor triggering signals: ALL DOGS
No Label poisoning

- Classify a cat as a dog: training

- If you have another class, you DON’T need different backdoor
Contribution

• We consider a fully black-box attack: the attacker doesn’t know the model

• We consider target classification: the attacker knows toward which class the error is going

• We consider NO label poisoning: we shouldn’t change the labels of the attacked samples \(\rightarrow\) slealthy
How our Backdoor attack works?

- **Training**
 - Select a target class t
 - Select a percentage α of t
 - Add backdoor images of power Δ_{tr} to the α
 - Feed pristine and attacked samples to CNN
How our Backdoor attack works?

- Testing

backdoor of power Δ_{ts}
Examples of our Backdoors

- Ramp signal: \(v(i, j) = \frac{j \Delta}{m} \), for \(1 \leq j \leq m, 1 \leq i \leq l \) where, \(m = nb.\ of\ columns, l = nb.\ of\ rows \)
Examples of our Backdoors

- Triangle signal:
 \[v(i, j) = \begin{cases}
 \frac{(m-j)\Delta}{m}, & \text{for } 1 \leq j \leq \frac{m}{2}, 1 \leq i \leq l \\
 \frac{j\Delta}{m}, & \text{for } \frac{m}{2} < j \leq m, 1 \leq i \leq l
 \end{cases} \]
Examples of our Backdoors

- Horizontal sinusoidal signal: $v(i,j) = \Delta \sin \left(\frac{2\pi jf}{m} \right)$, f is the frequency

$\Delta=20$, $f=6$ x4
$\Delta=40$, $f=6$ x4
$\Delta=60$, $f=6$ x4
Examples of our Backdoors

- Ramp signal

 pristine

 Backdoor with $\Delta=40$

- Sinusoidal signal

 pristine

 Backdoor with $\Delta=20$, $f=6$
Experimental Setup

• Datasets:
 ✓ MNIST:
 ❖ 10 digits (classes): 0-9
 ❖ Grayscale 28x28
 ❖ ~ 6000 samples/class for training & ~ 1000 samples/class for testing

 ✓ GTSRB:
 ❖ Select the most populated 16 classes
 ❖ RGB 32x32
 ❖ ~ 1000 samples/class for training & ~ 450 samples/class for testing
Experimental Setup

- Networks:
 - For MNIST: a KERAS VGG-like model with 5 convolutional layers, 2 FC and 1 Softmax
 - For GTSRB: LeNet-5
 - ResNet-50
Experimental Results (MNIST)

- **REQ1**: We didn’t impair the training
Experimental Results (MNIST)

- **REQ2**: We induce error at testing time

 \[\alpha = 0.3, t = 3, \Delta_{tr} = 30, \Delta_{ts} = 40 \]

 \[\alpha = 0.3, t = 3, \Delta_{tr} = 30, \Delta_{ts} = 30 \]

 \[\alpha = 0.3, t = 3, \Delta_{tr} = 30, \Delta_{ts} = 60 \]
Experimental Results (MNIST)

Attack success rate (%) in the case of MNIST classification for several values of α and Δ_{ts} ($\Delta_{tr} = 30$), for different target digits t. The rate is averaged over all the test digits.

<table>
<thead>
<tr>
<th>α/Δ_{ts}</th>
<th>$t = 2$</th>
<th>$t = 4$</th>
<th>$t = 7$</th>
<th>$t = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 40 60 80</td>
<td>30 40 60 80</td>
<td>30 40 60 80</td>
<td>30 40 60 80</td>
</tr>
<tr>
<td>0.2</td>
<td>77 83 91 93</td>
<td>23 27 34 44</td>
<td>28 35 45 55</td>
<td>67 75 86 89</td>
</tr>
<tr>
<td>0.3</td>
<td>71 79 88 92</td>
<td>67 75 86 90</td>
<td>49 61 77 87</td>
<td>73 79 88 92</td>
</tr>
<tr>
<td>0.4</td>
<td>85 91 96 97</td>
<td>69 77 88 92</td>
<td>70 77 86 90</td>
<td>91 95 99 99</td>
</tr>
</tbody>
</table>

*• Higher α is better
• Higher Δ_{ts} is better
• Then, why $\alpha \neq 1.0?$*
Experimental Results (MNIST)

LetNet5 With $\alpha = 0.3$, $\Delta_{tr} = 40$, $t = 3$

VGG-Like With $\alpha = 0.3$, $\Delta_{tr} = 40$, $t = 3$

RESNET With $\alpha = 0.3$, $\Delta_{tr} = 40$, $t = 3$
Experimental Results (GTSRB)
Experimental Results (GTSRB)

- It works BUT less effectively than MNIST

\[\alpha = 0.2, t = 1, \Delta_{tr} = 20, f = 6, \Delta_{ts} = 30 \]
Experimental Results (GTSRB)

Attack success rate (%) in the case of traffic sign classification for different Δ_{ts} ($\Delta_{tr}=20, \alpha = 0.2, f = 6$). The rate is averaged on the 7 most successfully attacked test signs.

<table>
<thead>
<tr>
<th>%/ Δ_{ts}</th>
<th>$t = 1$</th>
<th>$t = 3$</th>
<th>$t = 7$</th>
<th>$t = 13$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 30 40 60</td>
<td>20 30 40 60</td>
<td>20 30 40 60</td>
<td>20 30 40 60</td>
</tr>
<tr>
<td></td>
<td>20 30 40 60</td>
<td>20 30 40 60</td>
<td>20 30 40 60</td>
<td>20 30 40 60</td>
</tr>
<tr>
<td>%</td>
<td>73 81 79 83</td>
<td>39 62 76 87</td>
<td>52 71 83 93</td>
<td>26 48 60 78</td>
</tr>
</tbody>
</table>

• Attack success rate increases with Δ_{ts}
Experimental Results: Multi-target attack

- At test time, we can inject b_1, b_2 or both
Experimental Results: Multi-target attack

- Train by poisoning $t = 5$ with a ramp and $t = 9$ with a triangle, $\alpha = 0.4$, and $\Delta_{tr} = \Delta_{ts} = 30$

- Multiple-target attacks are also possible
Conclusions and Future work

• We develop a new backdoor attack without label poisoning

• Price to pay with respect to attacks with label poisoning is the percentage of samples to be attacked

• Experiments on MNIST and GTSRB were successful

• Better development of Backdoor signals

• Investigate more the fact that backdoor could be dataset dependent
Thank you!