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is deformed between successive frames, and in this = arg min —q — + —1 + > = : + > — () (1) B The precision plots (left) and success plots (right) on OTB100, TC128 and UAV123, where the precision plots show
scenario, the response of the x-correlation between the distance precision (DP) value with a threshold of 20 pixels, and the success plots show the overlap success
Where is the regularization parameter for channel selection, the second term in Eq. (1) value with the area under the curve (AUC).

the model and the candidate targets will be distorted.

Table 1.VOT2018 unsupervised overlap average overview.
(The red, blue and green represent the best three results respectively.)
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tracking drift caused by occlusion.

Proposed Method

» Different types of deformation of target may
require different model update strategies in

visual object tracking.

» To equip the target object with its own tactile
(i.e. adjacent blocks) and use the tactile sense
to discrimate whether the target is occluded or
due to self-deformation.

If a patch (red) occludes the target, it will be kept in a set of candidate patches, otherwise it
will be removed from the set of patches and reset new one according the target.

Part3. Model updating strategy

The updating rate § € [0, 1] is used to control the update of tracking filter F,,; as &F, +(1-§)F,

from the t-th frame, where the &€ will be adjusted according to the discriminative

deformation of the target as following:

> |If the target is occluded by this surrounding patch, we can down-adjust & and limit the
model update to avoid the model contamination.

» If no occlusion has been detected, but the confidence level of the x-correlation response
mapping from the target is low, we then can up-adjust £ and enhance the model update
to adapt the rapid self-seformation of target.

A comparison of our approach (red) with ASRCF (yellow), HCFstar (blue), STRCF (green), and GFS-DCF (cyan)
on Girl2 and MotorRolling sequences from OTB100.




