

Related works

Discriminative Correlation Filters (DCFs) have several advantages:

- Directly learn mapping from dense samples around the target to Gaussian-like soft labels, and not need to manually annotation.
- With the circular shifts of training samples, the convolution operation used in correlation can be efficiently computed in Fourier domain.
- with robust multi-feature representation for target, such as HOG, Color Names (CN) and deep convolutional neural network (CNN) features , the tracking accuracy and robustness of the DCFs can be further improved.
- With spatiotemporal regularisation, the DCFs can outperform both in suppressing the adverse boundary effects and in computation to approximate multiple training samples with single one.

Problem Definition

The performance of DCF methods, such as GFS-DCF, STRCF, HCFstar, degrades significantly when the target is deformed between successive frames, and in this scenario, the response of the x-correlation between the model and the candidate targets will be distorted.

Main Contributions

- > We propose a new method based on a spatiotemporal regularised DCF for robust visual tracking, which considers the difference between occlusion-induced deformation and target selfdeformation.
- > We propose an adaptive strategy for model update according to the difference between occlusion and self-deformation of target. The proposed strategy can not only enhance the tracking performance with rapid target self-deformation, but also reduce tracking drift caused by occlusion.

Proposed Method

Motivation

- Different types of deformation of target may require different model update strategies in visual object tracking.
- To equip the target object with its own tactile (i.e. adjacent blocks) and use the tactile sense to discrimate whether the target is occluded or due to self-deformation.

information.

lowest channel attributes are set to zero by preset proportion.

ROBUST VISUAL OBJECT TRACKING WITH SPATIOTEMPORAL REGULARISATION AND DISCRIMINATIVE OCCLUSION DEFORMATION

Shiyong Lan¹, jin Li¹, Shipeng Sun¹, Xin Lai², Wenwu Wang³

¹ Sichuan University, China; ² Southwest Petroleum University, China; ³ University of Surrey, UK

ICIP2021 Paper ID: 1161

represent th	e best three results			
llum_change	tag_motion_change	tag_occlusion	tag_size_change	tag_all
0.4576	0.4944	0.3560	0.4812	0.4586
0.5007	0.4700	0.3175	0.4578	0.4344
0.4105	0.4391	0.3225	0.4301	0.4365
0.4089	0.4575	0.3204	0.3885	0.4213
0.4316	0.4414	0.2719	0.4016	0.4389
0.4251	0.3701	0.2804	0.3695	0.4025
0.3254	0.2548	0.2056	0.1759	0.2447
0.3867	0.3358	0.2385	0.3310	0.3428
0.3202	0.2704	0.2628	0.2774	0.2671
0.3606	0.4244	0.2724	0.4560	0.4440
0.3618	0.3386	0.2767	0.3532	0.3909
0.3575	0.3596	0.3096	0.3534	0.3773
0.3538	0.3776	0.2275	0.3253	0.3327