Persistent Multiple Hypothesis Tracking for Wide Area Motion Imagery

ICIP 2017: IEEE International Conference on Image Processing
Beijing, China
September 19th 2017

Raphael Spraul, Christine Hartung, Tobias Schuchert
email: raphael.spraul@iosb.fraunhofer.de
Motivation

- Tens of square kilometers ground coverage
- Image size ~ 23,000 x 30,000 pixel
- Framerate 1 – 2 Hz
- Vehicle size 10 x 20 pixel

Persistent tracking aims at continuously tracking vehicles even if a stop occurs

Framework for persistent WAMI tracking

- **Motion Detection**
 - Images
- **Multiple Hypothesis Tracking**
 - Detections: "motion based" & "classifier based"
 - Vehicle Classifier
 - App. Descriptor
 - Collision Test
 - Images
- **Clutter Handling**
 - Clutter track
 - Valid track
 - Images
- **Tracks**
Vehicle Detection

- Motion-based vehicle detection
- Median background subtraction approach
- Neighborhood consideration
- Yields best results according to [2]

\[D_k(x, y) = \min_{(\Delta x, \Delta y) \in N} |I_k(x, y) - I_{BG}(x + \Delta x, y + \Delta y)| \]

- Quantile thresholding
- Morphological operations

Multiple Hypothesis Tracking

- Data association with „track-oriented“ MHT approach
- Track motion estimation with Kalman filter
- Motion model: constant velocity and turn rate
- Combined track score update

\[\Delta S_u(k) = \Delta S_{mot}(k) + \Delta S_{app}(k) \]

Motion score by Kalman filter

Appearance score by appearance descriptor
Appearance Descriptor

- Appearance Descriptor for calculating appearance scores for different track hypotheses
- Combination of
 - Local Binary Patterns (LBP)
 - Local Variance (VAR)
 - Brightness histogram (Hist)
- Hellinger distance between histograms to determine vehicle similarity
Vehicle Collision Test

- MHT produces many track hypotheses
- Using *a-priori* knowledge to reduce number of track hypotheses improves data association process
- Intersecting hypotheses result in a vehicle collision
- Vehicle collisions are excluded in standard driving behavior
Classifier-based Detections

- Median background approach does not detect stopped vehicles
- Classifier-based detections used for persistent tracking approach
- Sliding window classifier (see [3])

Clutter-Handling

- Reducing false alarms by track validation

 \[\text{clutter track} : \text{non-vehicle track originated from false detections} \]

- Delete...

 - ... tracks with short covert total distance

 - ... short tracks with a high „total curvature“

 \[\kappa(P) = \sum_{i} \alpha_i \]
Experimental Results

- ROI of size 1408x1408 pixels of WPAFB 2009 dataset
- 1025 frames
- 410 ground truth tracks
Quantitative Evaluation I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>precision</td>
<td>0.932</td>
<td>0.990</td>
<td>0.987</td>
<td>0.960</td>
<td>0.985</td>
<td>0.940</td>
</tr>
<tr>
<td>recall</td>
<td>0.657</td>
<td>0.606</td>
<td>0.550</td>
<td>0.539</td>
<td>0.504</td>
<td>0.573</td>
</tr>
<tr>
<td>f-score</td>
<td>0.770</td>
<td>0.752</td>
<td>0.706</td>
<td>0.690</td>
<td>0.667</td>
<td>0.712</td>
</tr>
<tr>
<td>N-MODA</td>
<td>0.609</td>
<td>0.600</td>
<td>0.543</td>
<td>0.516</td>
<td>0.497</td>
<td>0.536</td>
</tr>
<tr>
<td>S/T</td>
<td>0.373</td>
<td>0.015</td>
<td>0.200</td>
<td>0.237</td>
<td>0.249</td>
<td>0.851</td>
</tr>
<tr>
<td>B/T</td>
<td>1.005</td>
<td>0.317</td>
<td>0.500</td>
<td>1.022</td>
<td>1.515</td>
<td>1.293</td>
</tr>
<tr>
<td>MOTA</td>
<td>0.602</td>
<td>0.599</td>
<td>0.540</td>
<td>0.512</td>
<td>0.493</td>
<td>0.522</td>
</tr>
</tbody>
</table>

N-MODA = Normalized Multiple Object Detection Accuracy
MOTA = Multiple Object Tracking Accuracy
S/T = Switches per Track
B/T = Breaks per Track

Quantitative Evaluation II

<table>
<thead>
<tr>
<th>Component</th>
<th>Test case</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4)</th>
<th>(T_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance descriptor</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vehicle collision test</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Classifier based detections</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Clutter handling</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>MOTA</td>
<td></td>
<td>0.602</td>
<td>0.565</td>
<td>0.582</td>
<td>0.543</td>
<td>0.289</td>
</tr>
</tbody>
</table>
Qualitative Evaluation
Conclusion and Outlook

- Novel MHT framework for persistent multi-target tracking in WAMI data that recovers missing detections with a classifier

- Extensions
 - Appearance descriptor that assesses vehicle similarities
 - Vehicle collision test for discarding wrong data associations
 - Clutter-handling to reject tracks caused by false detections

- Outlook:
 Integrate split and merge handling

Thank you for your attention!