IMPROVING THE VISUAL QUALITY OF GENERATIVE ADVERSARIAL NETWORK (GAN) -GENERATED IMAGES USING THE MULTI-SCALE STRUCTURAL SIMILARITY INDEX.

Parimala Kancharla, Sumohana S. Channappayya Lab For Video & Image Analysis (LFOVIA)

Indian Institute of Technology Hyderabad Emails: ee15m17p100001@iith.ac.in, sumohana@iith.ac.in

1. Objective and Approach

- ► Goal: Simple yet effective method to improve the visual quality of Generative Adversarial Network (GAN) [1] generated images.
- Approach: Image quality assessment metric is introduced into the loss function of GAN to guarantee the local structural and statistical integrity.

2. Boundary Equilibrium Generative Adversarial Network (GAN)

- Generative Adversarial Networks (GANs) are generative models designed to learn the probability distribution of data that is aided by adversarial learning.
- A GAN is composed of two models: the generator model $G(z; \theta_G)$ and the discriminator model $D(x; \theta_D)$.
- Objective function:

5. Qualitative Results

Figure: BEGAN-MAD ($\lambda_1 = 1, \lambda_2 = 0$) based approach.

Figure: BEGAN-MAD+MS-SSIM ($\lambda_1 = 0.5$, $\lambda_2 = 0.5$) based approach.

 $\min_{C} \max_{D} V(D, G) = E_{x \sim p_{data}(x)}[\log(D(x))] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$

- ▶ BEGAN [2] is an extension of GAN, where the discriminator block is replaced with an autoencoder.
- ▶ The loss function L(x) for autoencoder is defined as follows .

 $L(x) = |x - D(x)|^{n}; n = 1, 2.$

The objective function of BEGAN then becomes

 $L_D = L(x) - k_t L(G(z))$ for θ_D , $L_G = L(G(z))$ for θ_G , $k_{t+1} = k_t + \lambda_k(\gamma L(x) - L(G(z)))$ for training step t.

- \blacktriangleright The parameters θ_G and θ_D are updated by minimizing the loss functions L_D and L_G respectively.
- ▶ k_t is the variable to control how much emphasis should be put on L(G(z))during gradient descent.
- \triangleright λ_k is the proportional gain for k_t .

3. Proposed MS-SSIM index Constrained BEGAN

► The autoencoder in BEGAN architecture allowed us to use the full reference image quality assessment metric.

Figure: BEGAN-MAD ($\lambda_1 = 1, \lambda_2 = 0$) based approach.

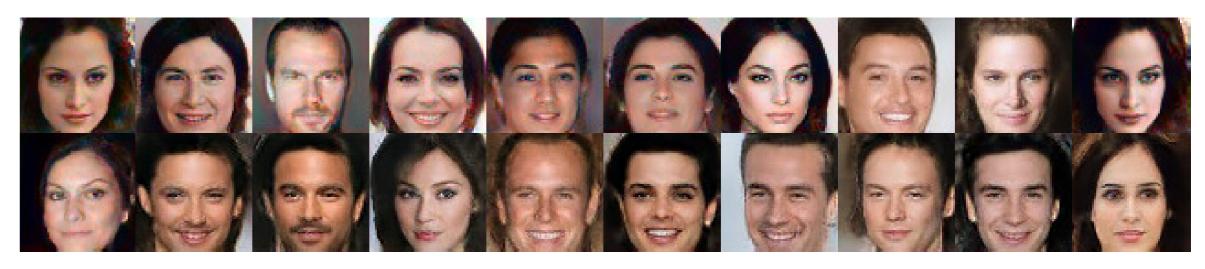
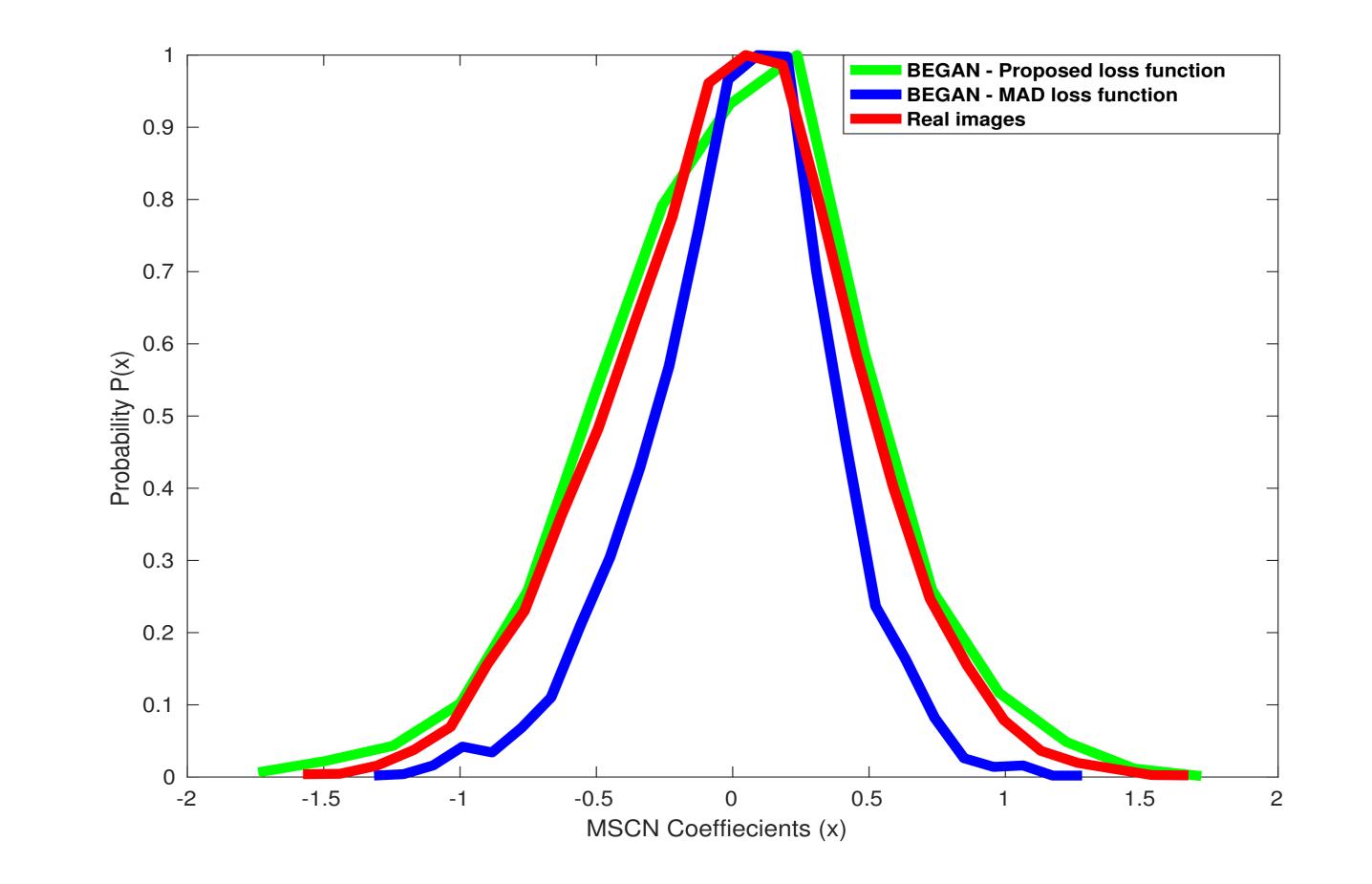



Figure: BEGAN-MAD+MS-SSIM ($\lambda_1 = 0.5$, $\lambda_2 = 0.5$) based approach.

Randomly selected BEGAN generated images trained on the CelebA dataset and the Stanford Cars dataset.

6. Performance Evaluation

- Multi scale Structural Similarity index (MS-SSIM) [3] is an image quality assessment technique, which measures the structural loss between two images.
- ► In the proposed method, the loss function of the BEGAN's discriminator is modified to be a weighted average of MAD and 1-(MS-SSIM).
- Proposed loss function:

 $L(x) = \lambda_1 L_1(x) + \lambda_2 L_2(x),$ $L_1(x) = |x - D(x)|^n,$ $L_2(x) = 1 - (MS-SSIM(x, D(x))).$

- Where λ_1 and λ_2 are normalized weights given to each of the metrics. Specifically, $0 \leq \lambda_1, \lambda_2 \leq 1$ and $\lambda_2 = 1 - \lambda_1$.
- ▶ The proposed method is evaluated for various combinations of λ_1 and λ_2 .

4. Quantitative Results

► The Frechet Inception Distance (FID) is used to quantify the quality of the generated samples.

 $\mathsf{FID}(x,g) = ||\mu_x - \mu_g||_2^2 + \mathsf{Tr}(\Sigma_x + \Sigma_g - 2(\Sigma_x \Sigma_g)^{\frac{1}{2}}),$

• (μ_x, Σ_x) and (μ_g, Σ_g) are the mean vector and the covariance matrix of the sample embeddings from the real and generated distributions respectively.

Figure: Normalized histograms of mean subtracted contrast normalized coefficients.

7. Conclusions and Future work

- ► We have explicitly integrated an image quality assessment model into the image generation model.
- Demonstrated that results are promising qualitatively and quantitatively.
- ► Future work: Build on these preliminary results by leveraging the rich literature on natural scene statistical models.

8. References

- ▶ NIQE [4] is a popular no reference image quality assessment technique based on natural scene statistics.
- ► FID and NIQE scores are negatively correlated with the visual quality.

Model Parameters		FID	NIQE
$\lambda_1(MAD)$	$\lambda_2(1-(MS-SSIM))$		
1	0	77.41	8.53
0.9	0.1	72.91	8.93
0.5	0.5	64.96	7.61
0.1	0.9	71.35	8.54
0	1	70.72	8.83

Model Parameters		FID	NIQE
$\Lambda_1 (MAD)$	$\lambda_2 (1-(MS-SSIM))$		
1	0	235.89	9.72
0.9	0.1	245.57	8.42
0.5	0.5	205.03	7.33
0.1	0.9	268.52	8.14
0	1	235.00	8.52

Table: Proposed BEGAN results on CelebA dataset (left) and Stanford cars dataset (right).

- ▶ I.Goodfellow, J.Pouget-Abadie, M.Mirza, B.Xu, D.Warde-Farley, S.Ozair, A.Courville, and Y.Bengio, "Generative adversarial nets," in Advances in Neural Information Processing Systems-2014
- ► D. Berthelot, T. Schumm, and L. Metz, BEGAN: boundary equilibrium generative adversarial networks, CoRR, vol. abs/1703.10717, 2017.
- Z. Wang, E. P. Simoncelli, and A. C. Bovik, Multi- scale structural similarity for image quality assessment, in Thirty-Seventh Asilomar Conference on, vol. 2. leee, 2003, pp. 13981402.
- ► A. Mittal, R. Soundararajan, and A. C. Bovik, Making a completely blind image quality analyzer, IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209212, 2013

