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1. Objective and Approach 5. Qualitative Results

» Goal: Simple yet effective method to improve the visual quality of Generative
Adversarial Network (GAN) [1] generated images.

» Approach: Image quality assessment metric is introduced into the loss function
of GAN to guarantee the local structural and statistical integrity.

Figure: BEGAN-MAD (A; = 1, A\, = 0) based approach.

» Generative Adversarial Networks (GANs) are generative models designed to -.: | ‘F" % * Al f#‘:’
learn the probability distribution of data that is aided by adversarial learning. '
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2. Boundary Equilibrium Generative Adversarial Network (GAN)

» A GAN is composed of two models: the generator model G(z;0¢) and the

discriminator model D(x; fp).

. : Figure: BEGAN-MAD+MS-SSIM ()\1 = 0.5, A, = 0.5) based approach.
» Objective function:

min max V(D, G) = Eyp,(0[108(D(x))] + E.p,(z)[log(1 — D(G(2)))] CXE AR ACALIE
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» BEGAN [2] is an extension of GAN, where the discriminator block is replaced Oy .;-"i‘. ,_?5,. & ) { v "f" .li "‘?‘ §o &
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with an autoencoder.

» The loss function L(x) for autoencoder is defined as follows . Flgure: BEGAN-MAD (A1 = 1, A2 = 0) based approach.

L(x)=|x—D(x)|";n=1,2. - 'f"
» The objective function of BEGAN then becomes y
Lp = L(x) — k:L(G(z)) for Op,
Lec = L(G(z2)) for O, '3 't-#ﬁ;r
Kiy1 = K + >\k(7L(X) — L(G(Z))) for training step t. Figure: BEGAN—I\/IAD+|\/|S—SSIM ()\1 = 0.5, )\2 = 0.5) based approach.

» The parameters 0 and 0p are updated by minimizing the loss functions Lp

_ » Randomly selected BEGAN generated images trained on the CelebA dataset
and L¢ respectively.

and the Stanford Cars dataset.
» k; is the variable to control how much emphasis should be put on L(G(z))

during gradient descent. 6. Performance Evaluation
» Ak is the proportional gain for k;.

W= BEGAN - Proposed loss function
mmmmm BEGAN - MAD loss function
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. Proposed MS-SSIM index Constrained BEGAN

» | he autoencoder in BEGAN architecture allowed us to use the full reference
iImage quality assessment metric. 07 |

» Multi scale Structural Similarity index (MS-SSIM) [3] is an image quality
assessment technique, which measures the structural loss between two images.
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» In the proposed method, the loss function of the BEGAN's discriminator is
modified to be a weighted average of MAD and 1-(MS-SSIM).

» Proposed loss function:

L(X) — )\1L1(X) -+ )\QLQ(X),
Li(x) = |x = D(x)/",
Lr(x) =1— (MS-SSIM(x, D(x))). _ o . iy ; i 5 >
» Where A1 and )\, are normalized weights given to each of the metrics. MSCN Coeffiecients (x)
Specifically, 0 < A\, My < 1land Ay =1 — \;.
» [he proposed method is evaluated for various combinations of A; and \,.
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Figure: Normalized histograms of mean subtracted contrast normalized coefficients.

7. Conclusions and Future work

4. Quantitative Results

» We have explicitly integrated an image quality assessment model into the

» The Frechet Inception Distance (FID) is used to quantify the quality of the | |
image generation model.

generated samples.
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FID(x, 8) = |[1x — pgllz + Tr(ZX +2g— z(zng)2)v » Future work: Build on these preliminary results by leveraging the rich literature
> (tx,2x) and (pg,Xz) are the mean vector and the covariance matrix of the on natural scene statistical models.

sample embeddings from the real and generated distributions respectively.

» Demonstrated that results are promising qualitatively and quantitatively.
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