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1. Objective and Approach

I Goal: Simple yet effective method to improve the visual quality of Generative
Adversarial Network (GAN) [1] generated images.

I Approach: Image quality assessment metric is introduced into the loss function
of GAN to guarantee the local structural and statistical integrity.

2. Boundary Equilibrium Generative Adversarial Network (GAN)

I Generative Adversarial Networks (GANs) are generative models designed to
learn the probability distribution of data that is aided by adversarial learning.

I A GAN is composed of two models: the generator model G (z ; θG) and the
discriminator model D(x ; θD).

I Objective function:

min
G

max
D

V (D,G ) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1− D(G (z)))]

I BEGAN [2] is an extension of GAN, where the discriminator block is replaced
with an autoencoder.

I The loss function L(x) for autoencoder is defined as follows .

L(x) = |x − D(x)|n; n = 1, 2.

I The objective function of BEGAN then becomes

LD = L(x)− ktL(G (z)) for θD,

LG = L(G (z)) for θG ,

kt+1 = kt + λk(γL(x)− L(G (z))) for training step t.

I The parameters θG and θD are updated by minimizing the loss functions LD
and LG respectively.

I kt is the variable to control how much emphasis should be put on L(G (z))
during gradient descent.

I λk is the proportional gain for kt.

3. Proposed MS-SSIM index Constrained BEGAN

I The autoencoder in BEGAN architecture allowed us to use the full reference
image quality assessment metric.

I Multi scale Structural Similarity index (MS-SSIM) [3] is an image quality
assessment technique, which measures the structural loss between two images.

I In the proposed method, the loss function of the BEGAN’s discriminator is
modified to be a weighted average of MAD and 1-(MS-SSIM).

I Proposed loss function:

L(x) = λ1L1(x) + λ2L2(x),

L1(x) = |x − D(x)|n,
L2(x) = 1− (MS-SSIM(x ,D(x))).

I Where λ1 and λ2 are normalized weights given to each of the metrics.
Specifically, 0 ≤ λ1, λ2 ≤ 1 and λ2 = 1− λ1.

I The proposed method is evaluated for various combinations of λ1 and λ2.

4. Quantitative Results

I The Frechet Inception Distance (FID) is used to quantify the quality of the
generated samples.

FID(x , g) = ||µx − µg ||22 + Tr
(

Σx + Σg − 2
(

ΣxΣg

)1
2
)
,

I (µx,Σx) and (µg ,Σg) are the mean vector and the covariance matrix of the
sample embeddings from the real and generated distributions respectively.

I NIQE [4] is a popular no reference image quality assessment technique based
on natural scene statistics.

I FID and NIQE scores are negatively correlated with the visual quality.

Model Parameters FID NIQE
λ1(MAD) λ2(1-(MS-SSIM))

1 0 77.41 8.53
0.9 0.1 72.91 8.93
0.5 0.5 64.96 7.61
0.1 0.9 71.35 8.54
0 1 70.72 8.83

Model Parameters FID NIQE
λ1 (MAD) λ2 (1-(MS-SSIM))

1 0 235.89 9.72
0.9 0.1 245.57 8.42
0.5 0.5 205.03 7.33
0.1 0.9 268.52 8.14
0 1 235.00 8.52

Table: Proposed BEGAN results on CelebA dataset (left) and Stanford cars
dataset (right).

5. Qualitative Results

Figure: BEGAN-MAD (λ1 = 1, λ2 = 0) based approach.

Figure: BEGAN-MAD+MS-SSIM (λ1 = 0.5, λ2 = 0.5) based approach.

Figure: BEGAN-MAD (λ1 = 1, λ2 = 0) based approach.

Figure: BEGAN-MAD+MS-SSIM (λ1 = 0.5, λ2 = 0.5) based approach.

I Randomly selected BEGAN generated images trained on the CelebA dataset
and the Stanford Cars dataset.

6. Performance Evaluation
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Figure: Normalized histograms of mean subtracted contrast normalized coefficients.

7. Conclusions and Future work

I We have explicitly integrated an image quality assessment model into the
image generation model.

I Demonstrated that results are promising qualitatively and quantitatively.
I Future work: Build on these preliminary results by leveraging the rich literature

on natural scene statistical models.
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