

Shagan Sah, Dheeraj Peri, Ameya Shringi, Chi Zhang, Miguel Dominguez, Andreas Savakis, Raymond Ptucha Rochester Institute of Technology, New York, USA Contact-<u>sxs4337@rit.edu</u>

Common Vector Space

- An ambitious goal for machine learning in the vision and language domain is to be able to represent different modalities of data that have the same meaning with a common latent representation.
- A sufficiently powerful model should be able to store similar concepts in a similar representation or produce any of these realizations from the same latent space.
- Successfully mapping visual and textual modalities in and out of this latent space would significantly impact the broad task of information retrieval.
- We propose a cross-domain model capable of converting between text and image.

Text-to-Image Generation

- Recent work in image generation has shown significant improvements in image quality when text is used as a prior.
- We propose two improvements to the text conditioned image generation-
 - A n-gram metric based cost function is introduced that generalizes the caption with respect to the image.
 - Multiple semantically similar sentences are shown to help in generating better images.

SEMANTICALLY INVARIANT TEXT-TO-IMAGE GENERATION

Architecture

- The model consists of two pre-trained modules -- an image generator (G) that inputs a latent representation h_t and generates an image \hat{x} ; and an image captioner that inputs an image \hat{x} and generates a caption \hat{y} .
- To update the latent vector h_t , cross-entropy between the generated caption \hat{y} and a ground truth caption y is used while the weights for the generator and CNN are fixed.

Results

Input

a piece of cake on a plate with a fork

Input

A boat on a beach

near some water.

Two vases that are

has green leaves

Input

painted on.

table.

both white, and one

a vase filled with flowers on top of a table

a small bird perched on top of a wooden post

Output

Ours (with BLEU-1)

 8.04 ± 0.57

 $\textbf{8.30} \pm \textbf{0.78}$

Evaluation of the generated image quality using the inception and detection scores.

hod		Inception		Detectior
e (FC-6)		5.77 ± 0.96		0.762
N [5]		6.71 ± 0.45		0.717
R (B-1)		7.22 ± 0.81		0.713
$N_c = 5)$		$\textbf{8.30} \pm \textbf{0.78}$		1.004
C	Inception		Detecti	on
_	7.22 ± 0.81		0.713	3

0.915

1.005

Pre-trained YOLO object detector tested on synthetically generated images.

PPGN

Output

A red and white bus is parked by a curb

A church steeple with clocks showing on two sides.

 $N_c = 1$

 $N_c = 3$

 $N_c = 5$

