Deep Learning-based Obstacle Detection and Depth Estimation

Yi-Yu Hsieh1, Wei-Yu Lin1, Dong-Lin Li2, and Jen-Hui Chuang3

1Institute of Computer Science and Engineering, 2Computer Vision Research Center, 3Department of Computer Science
National Chiao Tung University, Taiwan

Sept. 24, 2019
Outline

- Introduction
- YOLO – a CNN for Deep Learning
- The Proposed Depth Prediction Based On YOLO
- Experimental Results
- Conclusion
Outline

■ Introduction

■ YOLO – a CNN for Deep Learning

■ The Proposed Depth Prediction Based On YOLO

■ Experimental Results

■ Conclusion
Introduction – Motivation

- Obstacle detection is a crucial issue in robotics and autonomous driving systems
- Because of perspective projection, obstacle depth information is lost
Introduction – Related Works

- To achieve **obstacle avoidance**, we need
 - Object detection
 - Depth prediction

- **Object detection** methods
 - Traditional methods
 - HOG + SVM
 - DPM
 - Deep learning-based methods
 - Fast / Faster R-CNN
 - SSD / R-FCN / FPN / FRCN

- **Depth prediction** methods
 - Traditional methods
 - Stereo matching
 - Deep learning-based methods (monocular)
 - FCRN
 - Godard *et al.*, CVPR, 2017
 - Kuznietsov *et al.*, CVPR, 2017
 → Too slow (10fps↓ on TITAN)

- Self-designed **real-time** architecture using YOLOv2/3
Introduction – Related Works

<table>
<thead>
<tr>
<th>Method/CNN model</th>
<th>COCO test mAP</th>
<th>Speed (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast R-CNN</td>
<td>39.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>41.5</td>
<td>7.0</td>
</tr>
<tr>
<td>R-FCN</td>
<td>51.9</td>
<td>12</td>
</tr>
<tr>
<td>RetinaNet</td>
<td>57.5</td>
<td>5.1</td>
</tr>
<tr>
<td>FPN FRCN</td>
<td>59.1</td>
<td>5.8</td>
</tr>
<tr>
<td>SSD 300x300</td>
<td>41.2</td>
<td>46</td>
</tr>
<tr>
<td>YOLOv2 416x416</td>
<td>44.0</td>
<td>67</td>
</tr>
<tr>
<td>SSD 500x500</td>
<td>46.5</td>
<td>19</td>
</tr>
<tr>
<td>YOLOv2 608x608</td>
<td>48.1</td>
<td>40</td>
</tr>
<tr>
<td>YOLOv3 416x416</td>
<td>55.3</td>
<td>35</td>
</tr>
<tr>
<td>YOLOv3 608x608</td>
<td>57.9</td>
<td>20</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- YOLO – a CNN for Deep Learning
- The Proposed Depth Prediction Based On YOLO
- Experimental Results
- Conclusion
YOLO – a CNN for Deep Learning
– YOLO: Main Concept

A. Splits input image into 13x13 cells
B. Predicts 5 bounding boxes for each cell
C. Final detections → thresholding and NMS (Non-maximum Suppression)
YOLO – a CNN for Deep Learning – YOLOv3

- **Architecture design**
 - **Darknet-53** → learns better, computes faster
 - 53 convolution layers and 5 stride-2 convolution layers
 - No max-pooling → use **stride-2 convolution**
 - Preserve more information, each pixel is responsible for layer output
 - Up-sample layer → multi-scale **prediction (3 scales)**
 - To find objects at different sizes

- Stride-2 convolution reduces the dimensionality of each feature map
 - Use convolutions to produce output features
 - Each feature has contribution to output features
YOLO – a CNN for Deep Learning
– YOLOv3: Up-sample Layer

- Up-sample increases the dimensionality of each feature map
 - Larger feature map → detection of smaller objects
 - Concatenation of object information → better detection result
YOLO – a CNN for Deep Learning
– YOLOv3: Output Layers

- Output layer feature map size: 13×13, 26×26, 52×52
- For each scale
 - Each cell predicts 3 bounding boxes
 - Each bounding box needs 85 parameters
 - $x, y, w, h, confidence$
 - $class_1, class_2, \ldots, class_{80}$ (COCO has 80 classes)
 - The depth of output layer is $3 \times 85 = 255$
YOLO – a CNN for Deep Learning
– YOLOv3: Output Layers

- Output layer feature map size: 13×13, 26×26, 52×52
- For each scale
 - Each cell predicts 3 bounding boxes
 - Each bounding box needs 85 parameters
 - $x, y, w, h, \text{confidence}$
 - class1, class2, ..., class80 (COCO has 80 classes)
 - The depth of output layer is $3 \times 85 = 255$
<table>
<thead>
<tr>
<th>Layer Type</th>
<th>Feature Map Number</th>
<th>Filter Size</th>
<th>Filter Stride</th>
<th>Output Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutional</td>
<td>512</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>Convolutional</td>
<td>1024</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>Convolutional</td>
<td>512</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>Convolutional</td>
<td>1024</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>Convolutional (A1)</td>
<td>512</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>convolutional</td>
<td>1024</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>Prediction 1 (scale 1)</td>
<td>255</td>
<td>1×1</td>
<td>1</td>
<td>13 \times 13</td>
</tr>
<tr>
<td>A1</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>13×13</td>
</tr>
<tr>
<td>Up-sample</td>
<td>256</td>
<td>$2 \times$</td>
<td>2</td>
<td>26×26</td>
</tr>
<tr>
<td>Convolutional+A2</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Convolutional</td>
<td>512</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Convolutional</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Convolutional</td>
<td>512</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Convolutional (B1)</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Convolutional</td>
<td>512</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Prediction 2 (scale 2)</td>
<td>255</td>
<td>1×1</td>
<td>1</td>
<td>26 \times 26</td>
</tr>
<tr>
<td>B1</td>
<td>128</td>
<td>3×3</td>
<td>1</td>
<td>26×26</td>
</tr>
<tr>
<td>Up-sample</td>
<td>128</td>
<td>$2 \times$</td>
<td>2</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional+B2</td>
<td>128</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional</td>
<td>128</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional</td>
<td>128</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Convolutional</td>
<td>256</td>
<td>3×3</td>
<td>1</td>
<td>52×52</td>
</tr>
<tr>
<td>Prediction 3 (scale 3)</td>
<td>255</td>
<td>1×1</td>
<td>1</td>
<td>52 \times 52</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- YOLO – a CNN for Deep Learning
- The Proposed Depth Prediction Based On YOLO
- Experimental Results
- Conclusion
The Proposed Depth Prediction – YOLOv3-based Architecture

- Two modifications
 1. Multiple depth prediction branches
 2. Modify the output layer

![Diagram showing the architecture of the proposed depth prediction model based on YOLOv3. The diagram includes multiple depth prediction branches and modified output layers.](image-url)
The Proposed Depth Prediction – YOLOv3-based Architecture: Multiple depth branches

- 3 prediction layers in original YOLOv3
 → 3 depth prediction branches
 - Output layer feature map sizes: 13×13, 26×26, 52×52
 - 3 boxes per cell (for each scale)
 - One depth prediction for each box

➢ The sizes of output layer: $13 \times 13 \times 3$, $26 \times 26 \times 3$, $52 \times 52 \times 3$
The Proposed Depth Prediction – YOLOv3-based Architecture: Multiple depth branches
The Proposed Depth Prediction – YOLOv3-based Architecture: Output Layer

- Each bounding box now needs $85+1$ parameters
 - $x, y, w, h, \text{confidence}, \text{depth}$
 - $\text{class}_1, \text{class}_2, \cdots, \text{class}_{80}$
- Each cell predicts 3 bounding boxes
- The depth of output layer is $3 \times (85+1) = 255+3$
The Proposed Depth Prediction
– Adapt KITTI Dataset as Our Experimental Data

- KITTI has RGB image and corresponding depth image
- To train our model: use ground truth of object depth
 - Use RGB images to locate objects
 - Use depth images to calculate ground truth of object depth
The Proposed Depth Prediction
– Adapt KITTI Dataset as Our Experimental Data

1. Use original YOLOv3 to locate objects
 - The input of original YOLOv3 is square(1:1), and may cause object distortion and feature loss
The Proposed Depth Prediction
– Adapt KITTI Dataset as Our Experimental Data

2. Split images to near square
 - Original: 1242×375 (3.3:1)
 - Split: 480×375 (1.2:1)
The Proposed Depth Prediction – Adapt KITTI Dataset as Our Experimental Data

3. Refine object location using Mask-RCNN
 - Object bounding box is not accurate enough
 - object depth may be erroneous
The Proposed Depth Prediction
– Adapt KITTI Dataset as Our Experimental Data

3. Refine object location using Mask-RCNN
 - Object bounding box is not accurate enough
 ➢ object depth may be erroneous

object mask:
The Proposed Depth Prediction
– Adapt KITTI Dataset as Our Experimental Data

4. Define object depth (for obstacle detection)
 - Use average depth of the nearest 20% object points
 - KITTI dataset: 60K training images & 130K objects/depths
The Proposed Depth Prediction
– Build a Dataset Using AirSim

- AirSim – a program to generate training data
 - Load different scenes – different data domains
 - Generate different types of ground truth
 - RGB images / depth images / segmentation images
 - Use different vehicles
 - Car
 - Drone

RGB Depth Segmentation
The Proposed Depth Prediction
– Build a Dataset Using AirSim — Data Collection

- Camera position
 - Equally spaced samples along red lines: 1m spacing
 - Height: 1, 2 … 10m

- Camera direction
 - Random samples from normal distribution
 - Yaw: $\mu=0$, $\sigma=30$; Pitch: $\mu=0$, $\sigma=15$; Roll: $\mu=0$, $\sigma=15$
The Proposed Depth Prediction – Build a Dataset Using AirSim — Generate GT

- **Bounding box** ground truth

- **Object depth** ground truth
 - Nearest 20% depth average in the **mask**

- **Dataset detail**
 - Number of training images: 32,800
 - Number of objects: 60,000
The Proposed Depth Prediction
– Training Details

- Pre-trained COCO dataset
- Use data augmentation
 - Flip, rotate, random crop, adjust hue, saturation, exposure
- Add depth prediction loss (L_1 distance)
 \[\sum_{i}^{N} |depth_i - depth_i^*| \]
- For KITTI-depth dataset
 - Detection result of original YOLOv3 is good
 - Train depth prediction branch only
- For AirSim Dataset
 - Detection result of original YOLOv3 is no good
 - Train full architecture
The Proposed Depth Prediction – Training Details

- Pre-trained on ImageNet
- Use data augmentation
 - Flip, rotate, random crop, adjust hue, saturation, exposure
- Add depth prediction loss
 \[
i_{\text{depth}}(i) \times i_{\text{depth}}(i) \]
- For KITTI-depth dataset
 - Detection result of original YOLOv3 is good
 - Train depth prediction branch only
- For AirSim Dataset
 - Detection result of original YOLOv3 is no good
 - Train full architecture
The Proposed Depth Prediction

– Evaluation Metrics

- For object detection

\[\text{Precision} = \frac{\text{# of correct detections}}{\text{# of total detections}}, \quad \text{Recall} = \frac{\text{# of correct detections}}{\text{# of ground truths}} \]

- For depth prediction

 - Absolute relative difference (ARD):
 \[\frac{1}{N} \sum_{i}^{N} \left| \frac{y_i - y_i^*}{y_i^*} \right| \]

 - Root mean square error (RMSE):
 \[\sqrt{\frac{1}{N} \sum_{i}^{N} (y_i - y_i^*)^2} \]

 - Threshold: percentage of \(y_i \) such that
 \[\delta = \max \left(\frac{y_i}{y_i^*}, \frac{y_i^*}{y_i} \right) < thr \]

\(y_i \): predicted depth
\(y_i^* \): ground truth depth
\(N \): total object number
Outline

- Introduction
- YOLO – a CNN for Deep Learning
- The Proposed Depth Prediction Based on YOLO
- Experimental Results
- Conclusion
Experimental Results
– Testing Dataset Detail

- KITTI-depth
 - Number of testing images: 5,200
 - Number of objects: 14,200

- AirSim
 - Number of testing images: 3,400
 - Number of objects: 5,100
Experimental Results – From Depth Image to Object Depth

- Evaluation
 - Baselines
 - Depth per pixel
 - Our method
 - Depth per object

- To make fair comparison
 - Transform the result of baseline
Experimental Results
– Comparison with other methods

- Observation – KITTI-depth dataset
 - YOLOv3-based model compares favorably with other methods (and better than YOLOv2-based model)

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE (meter)</th>
<th>ARD</th>
<th>Threshold (No Cap)</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Cap</td>
<td>Cap 50</td>
<td>Cap 30</td>
<td></td>
</tr>
<tr>
<td>Godard et al. (CVPR, 2017)</td>
<td>6.011</td>
<td>4.939</td>
<td>2.853</td>
<td>0.207</td>
</tr>
<tr>
<td>Kuznietsov et al. (CVPR, 2017)</td>
<td>4.958</td>
<td>3.483</td>
<td>1.903</td>
<td>0.131</td>
</tr>
<tr>
<td>Ours (YOLOv2-based)</td>
<td>4.373</td>
<td>3.908</td>
<td>2.887</td>
<td>0.159</td>
</tr>
<tr>
<td>Ours (YOLOv3-based)</td>
<td>2.927</td>
<td>2.655</td>
<td>1.899</td>
<td>0.086</td>
</tr>
</tbody>
</table>

*Cap 50: only objects within 50m are calculated
*Tested on GTX1080

Lower is better
Higher is better
Experimental Results
– Comparisons between YOLOv2 and YOLOv3-based Model

- YOLOv2-based model testing result on KITTI-depth dataset
Experimental Results
– Comparisons between YOLOv2 and YOLOv3-based Model

- YOLOv3-based model testing result on KITTI-depth dataset
Experimental Results
– Comparisons between YOLOv2-based and YOLOv3-based Model

Observations
- YOLOv3-based model is better than YOLOv2-based model
- Fewer training data → larger relative error

Object depth distribution of training set

- **Object Count**
- **Percentage (%)**

Ground Truth Object Depth (m)

Object count

Cumulative percentage
Experimental Results
– Comparisons between different input sizes

- Observations – KITTI-depth dataset
 - Increasing input size decreases performance
 - Larger input size → lower FPS

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Size</th>
<th>RMSE (meter)</th>
<th>ARD</th>
<th>Threshold (No Cap)</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Cap</td>
<td>Cap 50</td>
<td>Cap 30</td>
<td>δ < 1.25</td>
</tr>
<tr>
<td>Ours (YOLOv3)</td>
<td>416 x 416</td>
<td>2.927</td>
<td>2.655</td>
<td>1.899</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>480 x 480</td>
<td>2.981</td>
<td>2.671</td>
<td>1.871</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>544 x 544</td>
<td>2.983</td>
<td>2.695</td>
<td>1.909</td>
<td>0.093</td>
</tr>
</tbody>
</table>

Lower is better
Higher is better
Table: Model Performance

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Size</th>
<th>RMSE (meter)</th>
<th>ARD</th>
<th>Threshold (No Cap)</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Cap</td>
<td>Cap 30</td>
<td>Cap 30</td>
<td>δ < 1.25</td>
</tr>
<tr>
<td>Ours (YOLOv3)</td>
<td>416 × 416</td>
<td>2.927</td>
<td>2.655</td>
<td>1.899</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>480 × 480</td>
<td>2.981</td>
<td>2.671</td>
<td>1.871</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>544 × 544</td>
<td>2.983</td>
<td>2.695</td>
<td>1.909</td>
<td>0.093</td>
</tr>
</tbody>
</table>

- **Lower is better**
- **Higher is better**
Experimental Results
– Comparisons between different input sizes

- Observation – AirSim dataset
 - Larger input size → higher recall rate
 - Larger input size → higher RMSE error

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Size</th>
<th>RMSE (meter)</th>
<th>ARD</th>
<th>Threshold (No Cap)</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No Cap</td>
<td>Cap 50</td>
<td>Cap 30</td>
<td>δ < 1.25</td>
<td>δ < 1.56</td>
<td>δ < 1.95</td>
</tr>
<tr>
<td>Ours Fix (YOLOv3)</td>
<td>416 × 416</td>
<td>6.473</td>
<td>5.376</td>
<td>3.257</td>
<td>0.195</td>
<td>0.401</td>
<td>0.513</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.323</td>
<td>2.815</td>
<td>1.719</td>
<td>0.075</td>
<td>0.868</td>
<td>0.922</td>
</tr>
<tr>
<td></td>
<td>480 × 480</td>
<td>3.773</td>
<td>2.910</td>
<td>1.342</td>
<td>0.085</td>
<td>0.929</td>
<td>0.961</td>
</tr>
<tr>
<td></td>
<td>544 × 544</td>
<td>3.935</td>
<td>2.963</td>
<td>1.431</td>
<td>0.092</td>
<td>0.928</td>
<td>0.962</td>
</tr>
</tbody>
</table>

Lower is better
Higher is better
Experimental Results
– Comparisons between different input sizes

\[\delta = \max \left(\frac{y_i}{y_i^*}, \frac{y_i^*}{y_i} \right) \]

<table>
<thead>
<tr>
<th>Predicted Depth</th>
<th>Ground Truth</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object 1</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Object 2</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Object 3</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>

RMSE: 3.36

<table>
<thead>
<tr>
<th>Predicted Depth</th>
<th>Ground Truth</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object 1</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Object 2</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Object 3</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>Object 4</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

RMSE: 5.78
Experimental Results
– Interactions between AirSim and YOLOv3-based Model

Observations
- Training can improve precision and recall rates
- Depth architecture helps detector learn better
- Detector learns better → depth predicts better

Experimental Results

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE (meter)</th>
<th>Detection metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Cap</td>
<td>Cap 50</td>
</tr>
<tr>
<td>Original YOLOv3 (Not trained)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Original YOLOv3 (Trained)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ours Fix</td>
<td>6.473</td>
<td>5.376</td>
</tr>
<tr>
<td>Ours Full</td>
<td>3.323</td>
<td>2.815</td>
</tr>
</tbody>
</table>

Detector fixed

Lower is better
Higher is better
Experimental Results
– Qualitative Results

Go to demo video
Outline

■ Introduction

■ YOLO – a CNN for Deep Learning

■ The Proposed Depth Prediction Using YOLO

■ Experimental Results

■ Conclusion
Conclusion

- KITTI dataset is adapted and have ground truth object depth
- The original YOLOv2 and YOLOv3 are modified to incorporate depth prediction
- The proposed architecture compares favorably on other depth prediction methods (KITTI)
- Extra depth prediction architecture can enhance the performance of object detection (AirSim)
Thank you