VIEW-DEPENDENT VIRTUAL REALITY CONTENT FROM RGB-D IMAGES

Motivation

- * With the recent proliferation of high-fidelity head-mounted displays, there is increasing demand for photorealistic 3D content in virtual reality environments.
- * Creating photorealistic models is not only **difficult** but also **time consuming**.
- * We present a complete end-to-end pipeline for the capture, processing, and rendering of view-dependent 3D models from a single consumer-grade RGBD camera.

Fixed Texture

View-Dependent Textures from three different viewpoints

Cur Approach / Lystem Everview

1. Offline Stage:

a. Geometry Reconstruction

* Using Kinect Fusion to reconstruct the 3D model

b. Keyframe Selection and Triangulation

- * Select by space to maximize the covered area of viewpoints
- * Use convex hull to triangulate selected frames

c. Camera Trajectory Optimization

* Find the best camera pose of each key frame to maximize the color and geometry agreement.

2. Online Stage:

a. Data Pre-processing

* Generate the visibility map for each keyframe to achieve real-time per-vertex rendering

b. Render Image Selection

* Select the triangle that intersects with the direction ray from HMD position to the model center

c. Real-time Texture Rendering:

- * Find the corresponding RGB values from the keyframes of the selected triangle.
- * Use barycentric coordinated to compute the weight of each frame and update the vertex color of the 3D model

Experimental Results

- * The view-dependent 3D models captured by two depth sensors: Kinect and Intel Realsense
- * The color images captured the light-burst effect and accurately reproduced it at run-time.
- [•] Our method preserved the specularity of the object from different viewpoints
- * Our method can render all the test models in only 10~15 milliseconds (i.e., 70 ~ 90 fps), which is sufficient for real-time high frequency rendering.

Conclusion

- content with only single consumer-grade RGBD camera
- for real-world 3D scanning.

Reference

- cameras.ACM Trans. Graph., 33(4):155:1–155:10, July 2014
- 3. S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset of objectscans. arXiv:1602.02481, 2016

Chih-Fan Chen, Mark Bolas, Evan Suma Rosenberg {cfchen, bolas, suma}@ict.usc.edu

More Results and Comparison

- * We compared our results with Izadi et al. [1] and Zhou et al. [2] using a public RGB-D dataset from Choi et al.[3]
- * All the RGBD sequences were captured by non-experts.
- * Our system is able to handle the following conditions
- various lighting conditions

- various material (plastic, ceramics, leather, wood and metal) • various sizes (table, sculpture, toy) • 360-degree range (old man figurine)

KinFu[1]

Object	vertex	surface	images	color/depth images
Sculpture	208K	406K	108	3210 / 3225
Table	390K	763K	98	2906 / 2918
Chair	255K	495K	111	3299 / 3313
Toy	49K	97K	65	1936 / 1944
Figurine	99K	197K	96	2843 / 2856

USCInstitute for

Creative Technologies

Table 1: Information about the 3D models and images used in different examples.

