CONTEXT-AWARE AUTOMATIC OCCLUSION REMOVAL
Kumara Kahatapitiya, Dumindu Tissera, Ranga Rodrigo
k.kahatapitiy@cs.stonybrook.edu, dumindutissera@gmail.com, ranga@uom.lk
University of Moratuwa, Sri Lanka

MOTIVATION
- Existing image enhancement techniques for occlusion removal:
 - Domain-specific. Eg: shadow removal, image de-raining
 - Require manual-annotation.
- No work tries to capture occlusions based on image-context.

CHALLENGES
- How to capture image context in a generic domain?
 - Highly varying and complex.
 - Subjective in human perception, required to be captured objectively.
- How to evaluate?
 - No baseline.
 - No dataset annotating image-context and respective occlusions.

PROBLEM FORMULATION
- Making intelligent decisions:
 - Identifying image context based on background and foreground objects.
 - Detecting objects not related to image context as occlusions.
- Producing a visually-pleasing output:
 - Replacing the pixels related to occlusions coherently.

SYSTEM ARCHITECTURE
- Foreground Segmentator - foreground segmentations.
- Background Extractor - background class labels.
- Relation Predictor - image captions.
- Inpainter - images and random masks.
- Original corpus vs modified corpus of image captions for Relation Predictor.
- Random masks for Inpainter.

IMPLEMENTATION
- Data used for training sub-networks:
 - Foreground Segmentator - foreground segmentations.
 - Background Extractor - background class labels.
 - Relation Predictor - image captions.
 - Inpainter - images and random masks.
- Original corpus vs modified corpus of image captions for Relation Predictor.
- Random masks for Inpainter.

RESULTS
- Effectiveness of Word-Embeddings
- User Study
- Visually-Pleasing nature

CONCLUSION
- We establish a baseline for context-aware automatic occlusion removal in a generic domain, even with the lack of a relation based dataset.
- Although our approach learns meaningful relationships between object classes and utilizes hand designed algorithms to decide on occlusions, how humans perceive it can be different.
- As future work, we hope to develop a dataset that captures human annotations on object relations, which will enable end-to-end training of such networks.